Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 1 - Section 1.6 - Rules of Inference - Exercises - Page 79: 12

Answer

First we prove that premises $(p \land t) \rightarrow (r \lor s), q \rightarrow (u \land t), u \rightarrow p, \lnot s$ and $q$ leads to the conclusion $r $. This will prove that same premises (excluding q ) leads to the conclusion $q\rightarrow r$ through exercise 11. Then we prove the same with rules of inference.

Work Step by Step

A.) Through exercise 11 1.) $q$ 2.) $q \rightarrow (u \land t)$ 3.) $(u \land t)$ {Modus ponens from 1.) and 2.)} 4.) $u$ {Simplification from 3.)} 5.) $u \rightarrow p$ 6.) $p$ {Modus ponens for 4.) and 5.)} 7.) $t$ {Simplification from 3.)} 8.) $p \land t$ {Conjunction from 6.) and 7.)} 9.) $(p \land t) \rightarrow (r \lor s)$ 10.) $r \lor s$ {Modus ponens from 8.) and 9.)} 11.) $\lnot s$ 12.) $r$ {Disjunctive Syllogism from 10.) and 11.)} We have proved that premises $(p \land t) \rightarrow (r \lor s), q \rightarrow (u \land t), u \rightarrow p, \lnot s$ and $q$ leads to conclusion $r$. Hence by proof in exercise 11 we can say that the same premises excluding $q$ leads to conclusion $q \rightarrow r$. B.) Through rules of inference 1.) $q \rightarrow (u \land t)$ 2.) $q \rightarrow u$ {From 1.) equivalence of conditional statements} 3.) $q \rightarrow t$ {From 1.) equivalence of conditional statements} 4.) $u\rightarrow p$ 5.) $q\rightarrow p$ {Hypothetical Syllogism from 2.) and 4.)} 6.) $q\rightarrow (p \land t)$ {From 3.) and 5.) equivalence of conditional statements} 7.)$(p \land t) \rightarrow (r \lor s)$ 8.) $q\rightarrow (r \lor s)$ {Hypothetical syllogism from 6.) and 7.) } 9.) $\lnot s$ 10.) $s\equiv F$ {Laws of negation from 9.)} 11.) $p \rightarrow r $ {Identity Law from 10.) and 8.) } Hence, we have proved with the rules of inference that premises $(p \land t) \rightarrow (r \lor s), q \rightarrow (u \land t), u \rightarrow p, \lnot s$ leads to conclusion $p \rightarrow r $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.