Numerical Methods for Engineers

Published by McGraw-Hill Science/Engineering/Math
ISBN 10: 0073401064
ISBN 13: 978-0-07340-106-5

Chapter 1 - Mathematical Modeling and Engineering Problem Solving - Problems - Page 24: 1.19c


The solution is in the following image:

Work Step by Step

Calculate the exact values of $v$ and $x$ using equation $(1.10)$ and $\operatorname{Eq}(1)$ from part (a). Use the code below, written in GNU Octave to obtain the results and plot. please see the image below: ____________________________ now we continue the solution t=0:2:10; v(1)=0; x(1)=0; for k=2:6 v(k)=v(k-1)+(9.81-12.5/68.1 * v(k-1))*2; x(k)=x(k-1)+v(k-1)*2; end disp(v) %output 0.00000 19.62000 32.03736 39.89621 44.87003 48.01792 disp(x) %output 0.00000 0.00000 39.24000 103.31471 183.10714 272.84719 te=0:0.1:10; for k=1:101 xe(k)=9.81*68.1/12.5*(te(k)+68.1/12.5*exp(-12.5/68.1*te(k)))-9.81*68.1*68.1/(12.5*12.5); ve(k)=9.81*68.1/12.5*(1-exp(-12.5/68.1*te(k))); end plot(t,x) hold on plot(te,xe) xlabel('t') ylabel('x') hold off plot(t,v) hold on plot(te,ve) xlabel('t') ylabel('v')
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.