Materials Science and Engineering: An Introduction

Published by Wiley
ISBN 10: 1118324579
ISBN 13: 978-1-11832-457-8

Chapter 6 - Mechanical Properties of Metals - Questions and Problems - Page 211: 6.39

Answer

For steel, $ 1.67 \times 10^{6} J/m^{3}$ For brass, $ 7.44 \times 10^{5} J/m^{3}$ For aluminum, $ 5.48 \times 10^{5} J/m^{3}$ For titanium, $ 2.22 \times 10^{6} J/m^{3}$

Work Step by Step

Given: refer to the given table (steel alloy, brass alloy, aluminum alloy, and titanium alloy) from Table 6.1, the modulus of elasticity for each alloy is as follows: Steel alloy = 207 GPa Brass alloy = 97 GPa Aluminum alloy= 69 GPa Titanium alloy = 107 GPa Required: moduli of resilience for each alloy Solution: Using Equation 6.14: $U_{r} = \frac{σ_{y}^{2}}{2E}$ For steel, $U_{r} = \frac{(830 \times 10^{6} N/m^{2})^2}{(2)(207 \times 10^{9} N/m^{2})} = 1.67 \times 10^{6} J/m^{3}$ For brass, $U_{r} = \frac{(380 \times 10^{6} N/m^{2})^2}{(2)(97 \times 10^{9} N/m^{2})} = 7.44 \times 10^{5} J/m^{3}$ For aluminum, $U_{r} = \frac{(275 \times 10^{6} N/m^{2})^2}{(2)(69 \times 10^{9} N/m^{2})} = 5.48 \times 10^{5} J/m^{3}$ For titanium, $U_{r} = \frac{(690 \times 10^{6} N/m^{2})^2}{(2)(107 \times 10^{9} N/m^{2})} = 2.22 \times 10^{6} J/m^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.