Answer
$\begin{aligned} & F_{A D}=1.56 \mathrm{kN} \\ & F_{B D}=521 \mathrm{~N} \\ & F_{C D}=1.28 \mathrm{kN}\end{aligned}$
Work Step by Step
Equations of Equilibrium.
$
\begin{aligned}
& \Sigma F_x=0 ; F_{A D}\left(\frac{2}{\sqrt{6}}\right)-F_{B D}\left(\frac{2}{\sqrt{6}}\right)-F_{C D}\left(\frac{2}{3}\right)=0 \\
& \Sigma F_y=0 ;-F_{A D}\left(\frac{1}{\sqrt{6}}\right)-F_{B D}\left(\frac{1}{\sqrt{6}}\right)+F_{C D}\left(\frac{2}{3}\right)=0 \\
& \Sigma F_z=0 ; \quad F_{A D}\left(\frac{1}{\sqrt{6}}\right)+F_{B D}\left(\frac{1}{\sqrt{6}}\right)+F_{C D}\left(\frac{1}{3}\right)-130(9.81)=0
\end{aligned}
$
Solving Eqs.
$
\begin{aligned}
& F_{A D}=1561.92 \mathrm{~N}=1.56 \mathrm{kN} \\
& F_{B D}=520.64 \mathrm{~N}=521 \mathrm{~N} \\
& F_{C D}=1275.3 \mathrm{~N}=1.28 \mathrm{kN}
\end{aligned}
$