Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 3 - Equilibrium of a Particle - Section 3.4 - Three-Dimensional Force Systems - Problems - Page 114: 59

Answer

$\begin{aligned} & F_{A B}=348 \mathrm{~N} \\ & F_{A C}=413 \mathrm{~N} \\ & F_{A D}=174 \mathrm{~N}\end{aligned}$

Work Step by Step

$ \begin{aligned} & \mathbf{u}_{A B}=\frac{3 \mathbf{i}+4 \mathbf{j}+0.5 \mathbf{k}}{\sqrt{3^2+4^2+(0.5)^2}}=\frac{3 \mathbf{i}+4 \mathbf{j}+0.5 \mathbf{k}}{\sqrt{25.25}} \\ & \mathbf{u}_{A C}=\frac{-6 \mathbf{i}-3 \mathbf{j}+2.5 \mathbf{k}}{\sqrt{(-6)^2+(-3)^2+2.5^2}}=\frac{-6 \mathbf{i}-3 \mathbf{j}+2.5 \mathbf{k}}{\sqrt{51.25}} \\ & \mathbf{u}_{A D}=\frac{4 \mathbf{i}-3 \mathbf{j}+0.5 \mathbf{k}}{\sqrt{4^2+(-3)^2+0.5^2}}=\frac{4 \mathbf{i}-3 \mathbf{j}+0.5 \mathbf{k}}{\sqrt{25.25}} \\ & \Sigma F_x=0 ; \quad \frac{3}{\sqrt{25.25}} F_{A B}-\frac{6}{\sqrt{51.25}} F_{A C}+\frac{4}{\sqrt{25.25}} F_{A D}=0 \\ & \Sigma F_y=0 ; \quad \frac{4}{\sqrt{25.25}} F_{A B}-\frac{3}{\sqrt{51.25}} F_{A C}-\frac{3}{\sqrt{25.25}} F_{A D}=0 \\ & \Sigma F_z=0 ; \quad \frac{0.5}{\sqrt{25.25}} F_{A B}+\frac{2.5}{\sqrt{51.25}} F_{A C}+\frac{0.5}{\sqrt{25.25}} F_{A D}-20(9.81)=0 \end{aligned} $ After Solving, $ \begin{aligned} & F_{A B}=348 \mathrm{~N} \\ & F_{A C}=413 \mathrm{~N} \\ & F_{A D}=174 \mathrm{~N} \end{aligned} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.