Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 3 - Equilibrium of a Particle - Section 3.3 - Coplanar Force Systems - Problems - Page 101: 21

Answer

$l=2.66 \mathrm{ft}$

Work Step by Step

$ \begin{aligned} & l=\sqrt{4^2+2^2-2(2)(4) \cos 60^{\circ}} \\ & l=\sqrt{12} \\ & \frac{\sqrt{12}}{\sin 60^{\circ}}=\frac{2}{\sin \phi} \\ & \phi=\sin ^{-1}\left(\frac{2 \sin 60^{\circ}}{\sqrt{12}}\right)=30^{\circ} \\ & +\uparrow \Sigma F_y=0 ; \quad T \sin 60^{\circ}+F_s \sin 30^{\circ}-80=0 \\ & \rightarrow \Sigma F_x=0 ; \quad-T \cos 60^{\circ}+F_s \cos 30^{\circ}=0 \end{aligned} $ Solving for $F_s$. $ \begin{aligned} & F_s=40 \mathrm{lb} \\ & F_s=k x \\ & 40=50\left(\sqrt{12}-l^{\prime}\right) \quad l=\sqrt{12}-\frac{40}{50}=2.66 \mathrm{ft} \end{aligned} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.