Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 22 - Vibrations - Section 22.6 - Electrical Circuit Analogs - Problems - Page 674: 43

Answer

$$ y=\{-0.0232 \sin 8.97 t+0.333 \cos 8.97 t+0.0520 \sin 4 t\} \mathrm{ft} $$

Work Step by Step

$$ \begin{gathered} y=A \sin \omega_n t+B \cos \omega_n t+\frac{\delta_0}{1-\left(\frac{\omega_2}{\omega_0}\right)^2} \sin \omega_0 t \\ v=\dot{y}=A \omega_n \cos \omega_n t-B \omega_n \sin \omega_n t+\frac{\delta_0 \omega_0}{1-\left(\frac{\omega_0}{\omega_n}\right)^2} \cos \omega_0 t \end{gathered} $$ The initial condition when $t=0, y=y_0$, and $v=v_0$ is $$ \begin{aligned} & y_0=0+B+0 \quad B=y_0 \\ & v_0=A \omega_n-0+\frac{\delta_0 \omega_0}{1-\left(\frac{\omega_0}{\omega_n}\right)^2} \quad A=\frac{v_0}{\omega_n}-\frac{\delta_0 \omega_0}{\omega_n-\frac{\omega_0^2}{\omega_n}} \end{aligned} $$ Thus, $$ \begin{aligned} & y=\left(\frac{v_0}{\omega_n}-\frac{\delta_0 \omega_0}{\omega_n-\frac{\omega_0^2}{\omega_n}}\right) \sin \omega_n t+y_0 \cos \omega_n t+\frac{\delta_0}{1-\left(\frac{\omega_n}{\omega_n}\right)^2} \sin \omega_0 t \\ & \omega_n=\sqrt{\frac{k}{m}}=\sqrt{\frac{10}{4 / 32.2}}=8.972 \\ & \frac{\delta_0}{1-\left(\frac{\omega_0}{\omega_n}\right)^2}=\frac{0.5 / 12}{1-\left(\frac{4}{8.972}\right)^2}=0.0520 \\ & \frac{v_0}{\omega_n}-\frac{\delta_0 \omega_0}{\omega_n-\frac{\omega_0^2}{\omega_0}}=0-\frac{(0.5 / 12) 4}{8.972-\frac{4^2}{8.972}}=-0.0232 \\ & y=(-0.0232 \sin 8.97 t+0.333 \cos 8.97 t+0.0520 \sin 4 t) \mathrm{ft} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.