Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 2 - Force Vectors - Section 2.9 - Dot Product - Problems - Page 79: 130

Answer

$\begin{aligned} & \theta=74.4^{\circ} \\ & \phi=55.4^{\circ}\end{aligned}$

Work Step by Step

$\begin{array}{ll}\mathbf{r}_{A C}=[-2 \mathbf{i}-4 \mathbf{j}+1 \mathbf{k}] \mathrm{m} ; & r_{A C}=4.58 \mathrm{~m} \\ \mathbf{r}_{A B}=[1.5 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k}] \mathrm{m} ; & r_{A B}=5.22 \mathrm{~m} \\ \mathbf{r}_{A O}=\{-4 \mathbf{j}-3 \mathbf{k}\} \mathrm{m} ; & r_{A O}=5.00 \mathrm{~m} \\ \mathbf{r}_{A B} \cdot \mathbf{r}_{A O}=(1.5)(0)+(-4)(-4)+(3)(-3)=7 \\ \theta=\cos ^{-1}\left(\frac{\mathbf{r}_{A B^*} \mathbf{r}_{A O}}{r_{A B} r_{A O}}\right) \\ =\cos ^{-1}\left(\frac{7}{5.22(5.00)}\right)=74.4^{\circ} \\ \mathbf{r}_{A C} \cdot \mathbf{r}_{A O}=(-2)(0)+(-4)(-4)+(1)(-3)=13 \\ \phi=\cos ^{-1}\left(\frac{\mathbf{r}_{A C} \cdot \mathbf{r}_{A O}}{r_{A C} r_{A O}}\right) \\ =\cos ^{-1}\left(\frac{13}{4.58(5.00)}\right)=55.4^{\circ}\end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.