Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 17 - Planar Kinetics of a Rigid Body: Force and Acceleration - Section 17.1 - Mass Moment of Inertia - Problems - Page 422: 23

Answer

$I_{x^{\prime}}=7.19g\cdot m^2$

Work Step by Step

We can determine the required moment of inertia as follows: $I_x^{\prime}=I_{crank}+I_{plate}$ [eq(1)] We know that $I_{crank}=\frac{1}{2}m_cr^2+(\frac{1}{2}m_cr^2+m_cd^2)$ As $m_c=\rho V_c=7.85\times 10^3\pi r^2 t=7.851\times 10^3\times \pi (0.01)^2\times 0.05=0.1233Kg$ $\implies I_{crank}= \frac{1}{2}\times 0.1233(0.01)^2+[\frac{1}{2}(0.1233)(0.01)^2+0.1233(0.12)^2]$ $\implies I_{crank}=1.7878\times 10^{-3}Kg\cdot m^2$ Similarly $I_{plate}=\frac{1}{12}m_p(l^2+t^2)+m_pd^2$ As $m_p=\rho V_p=7.85\times 10^3\times 0.02\times 0.18\times 0.02=0.8478Kg$ $\implies I_{plate}= \frac{1}{12}\times 0.8478(0.18)^2+(0.03)^2+(0.8478)(0.06)^2=5.4047\times 10^{-3}Kg\cdot m^2$ Now, we plug in the known values in eq(1) to obtain: $I_{x^{\prime}}=1.7878\times 10^{-3}+5.4047\times 10^{-3}=7.19\times 10^{-3}Kg\cdot m^2=7.19g\cdot m^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.