Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 32 - Elementary Particles - General Problems - Page 946: 57

Answer

See the detailed answer below.

Work Step by Step

Let's assume that the actual wavelength of the proton is $\lambda_0$ We know that $$E^2=p^2c^2+m^2c^4$$ So that $$ p^2c^2=E^2-m^2c^4 $$ We also know that $E=KE+mc^2$, so $$ p^2c^2=( KE+mc^2)^2-m^2c^4 $$ $$ p^2c^2= KE^2+2mc^2KE+m^2c^4 -m^2c^4 $$ $$ p^2c^2= KE^2+2mc^2KE \tag 1 $$ We know that the wavelength is given by $$\lambda_0=\dfrac{h}{p}$$ Solving (1) for $p$ and then plugging it; $$\lambda_0=\dfrac{h}{\sqrt{\dfrac{KE^2+2mc^2KE}{c^2}}}=\dfrac{hc}{KE\sqrt{1+\dfrac{2mc^2}{KE}}}$$ $$\lambda_0 = \dfrac{hc}{KE\sqrt{1+\dfrac{2mc^2}{KE}}}\tag 2$$ where $\lambda=\dfrac{hc}{KE}\tag 3$, where $\lambda$ is the approximate wavelength. So that; $\lambda=1.01\lambda$ since $\lambda \gt \lambda_0$ Thus; $$\lambda = 1.01\lambda_0$$ Plugging from (2); $$\lambda=\dfrac{1.01hc}{KE\sqrt{1+\dfrac{2mc^2}{KE}}}\tag 2$$ Plugging from (3); $$\dfrac{hc}{KE}=\dfrac{1.01hc}{KE\sqrt{1+\dfrac{2mc^2}{KE}}} $$ $$1=\dfrac{1.01 }{ \sqrt{1+\dfrac{2mc^2}{KE}}} $$ $$\sqrt{1+\dfrac{2mc^2}{KE}}= 1.01 $$ Squaring both sides; $$ 1+\dfrac{2mc^2}{KE} = 1.01^2 $$ Solving for $KE$; $$ {2mc^2} = (1.01^2-1)KE $$ $$KE=\dfrac{2mc^2}{1.01^2-1}$$ Plugging the known; $$KE=\dfrac{2 \times 938.3\times 10^6}{1.01^2-1}=\color{red}{\bf 9.34\times 10^{10}}\;\rm eV$$ _____________________________________________ Thus, the corresponding wavelength is given by $$\lambda=\dfrac{hc}{KE}$$ Plugging the known; $$\lambda=\dfrac{6.626\times 10^{-34}\times 3\times 10^8}{9.34\times 10^{10}\times 1.6\times 10^{-19}}$$ $$\lambda=\color{red}{\bf 1.33\times 10^{-17}}\;\rm m$$ _____________________________________________ and its speed is given by; $$KE=mc^2\left[\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1\right]$$ Solving for $v$; $$KE= \dfrac{mc^2}{\sqrt{1-\dfrac{v^2}{c^2}}}-mc^2 $$ $$KE+mc^2= \dfrac{mc^2}{\sqrt{1-\dfrac{v^2}{c^2}}} $$ $$\dfrac{KE+mc^2}{mc^2}= \dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}} $$ $$\dfrac{mc^2}{KE+mc^2}= \sqrt{1-\dfrac{v^2}{c^2}} $$ $$\left(\dfrac{mc^2}{KE+mc^2}\right)^2= 1-\dfrac{v^2}{c^2 } $$ $$\dfrac{v^2}{c^2 } = 1- \left(\dfrac{mc^2}{KE+mc^2}\right)^2 $$ $$ v^2 = c^2\left[1 - \left(\dfrac{mc^2}{KE+mc^2}\right)^2 \right]$$ $$ v =\sqrt{ c^2\left[1 - \left(\dfrac{mc^2}{KE+mc^2}\right)^2 \right]}$$ $$ v =c\sqrt{ \left[1 - \left(\dfrac{mc^2}{KE+mc^2}\right)^2 \right]}$$ Plugging the known; $$ v =c\sqrt{ \left[1 - \left(\dfrac{(938.3\times 10^6) }{(9.34\times 10^{10})+[(938.3\times 10^6) ]}\right)^2 \right]}$$ $$v=0.999951c=0.999951\times 3\times 10^8$$ $$v=\color{red}{\bf 2.9998\times 10^8}\;\rm m/s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.