Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 32 - Elementary Particles - General Problems - Page 946: 56

Answer

See the detailed answer below.

Work Step by Step

Since one of the initial protons was at rest and the other was moving which means that there is an initial momentum and energy; and since the 4 products' protons are having the same mass and the same speed, then we can consider them as one object which mass is given by $m=4m_{\rm p}$. Now we need to find the $Q$-value of the reaction; $$Q=2Q_{\rm p}-4Q_{\rm p}$$ $$Q=(2m_{\rm p}-4m_{\rm p})c^2=-2m_pc^2\tag 1$$ According to energy conservation; $$E_{\rm p}+E_{\rm p,rest}=E_{\rm 4p}$$ Where $E_{\rm 4p}$ is the energy of the four product protons which is given by $E=KE+mc^2$; $$\overbrace{E_{\rm p}}^{KE+mc^2}+\overbrace{E_{\rm p,rest}}^{\overbrace{KE}^{0}+mc^2}=KE_{\rm 4p}+4m_pc^2$$ $$KE_{\rm p,max}+m_pc^2 +m_pc^2 =KE_{\rm 4p}+4m_pc^2$$ Solving for $KE_{\rm p,max}$ which is the threshold energy $$KE_{\rm p,max} =KE_{\rm 4p}+2m_pc^2\tag 2$$ According to momentum conservation; $$p_{\rm p}+0=p_{\rm 4p}$$ Multiplying both sides by $c$ and then squaring both sides so we can use the formula of $E^2=p^2c^2+m^2c^4$ which gave us $p^2c^2=E^2-m^2c^4$ $$p_{\rm p}^2c^2=p_{\rm 4p}^2c^2$$ So that; $$E_{\rm p}^2-m_{\rm p}^2c^4=E_{\rm 4p}^2-m_{\rm 4p}^2c^4$$ $$E_{\rm p}^2-m_{\rm p}^2c^4=E_{\rm 4p}^2-(4m_{\rm p})^2c^4$$ $$E_{\rm p}^2 =E_{\rm 4p}^2-15m_{\rm p}^2c^4$$ $$(KE_{\rm p,max}+m_pc^2 )^2 =(KE_{\rm 4p}+4m_pc^2)^2-15m_{\rm p}^2c^4$$ Plugging $KE_{\rm 4p}$ from (2); $KE_{\rm 4p}=KE_{\rm p,max} -2m_pc^2$; Thus; $$(KE_{\rm p,max}+m_pc^2 )^2 =(KE_{\rm p,max} -2m_pc^2+4m_pc^2)^2-15m_{\rm p}^2c^4$$ $$(KE_{\rm p,max}+m_pc^2 )^2 =(KE_{\rm p,max} +2m_pc^2)^2-15m_{\rm p}^2c^4$$ $$ KE^2_{\rm p,max}+2 m_pc^2KE_{\rm p,max}+m^2_pc^4 =\\ KE_{\rm p,max}^2+4m_pc^2KE_{\rm p,max} +4m^2_pc^4 -15m_{\rm p}^2c^4$$ $$ m^2_pc^4 -( 4m^2_pc^4 -15m_{\rm p}^2c^4) = 4m_pc^2KE_{\rm p,max} -2 m_pc^2KE_{\rm p,max}$$ Therefore; $$ 2m_pc^2KE_{\rm p,max} =12m^2_pc^4 $$ $$ KE_{\rm p,max} =\dfrac{12m^2_pc^4 }{ 2m_pc^2}=6m_pc^2$$ Divide by (1); $$ \dfrac{ KE_{\rm p,max} }{Q} =\dfrac{6m_pc^2}{2m_pc^2}=|-3|=3$$ And hence; $$ \boxed{KE_{\rm p,max} =3Q}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.