Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1055: 66

Answer

a) ${\bf 2.5}\;\rm \Omega$ b) ${\bf 8.1}\;\rm kHz$

Work Step by Step

From the given graph, we can see that - $\varepsilon_0=10$ V, - $I=2$ A, - $T=100\;\mu$s, and - $\phi =60^\circ$ since the current lags the emf and at $t=0$, $i=\frac{1}{2}I$ $$\color{blue}{\bf [a]}$$ We know that $$I=\dfrac{\varepsilon_0}{Z}$$ $$I=\dfrac{\varepsilon_0}{\sqrt{(X_L-X_C)^2+R^2}}\tag 1$$ Recalling that $$\tan\phi=\dfrac{X_L-X_C}{R}$$ So, $$X_L-X_C=R\tan\phi\tag 2$$ Plug (2) into (1), $$I=\dfrac{\varepsilon_0}{\sqrt{R^2(\tan\phi)^2+R^2}} $$ $$I=\dfrac{\varepsilon_0}{R\sqrt{ (\tan\phi)^2+1}} $$ Hence, $$R=\dfrac{\varepsilon_0}{I\sqrt{ (\tan\phi)^2+1}} $$ Plug the known; $$R=\dfrac{(10)}{(2)\sqrt{ (\tan60^\circ)^2+1}} =\color{red}{\bf 2.5}\;\rm \Omega$$ $$\color{blue}{\bf [b]}$$ We know that the resonance frequency occurs when $$X_L=X_C$$ $$2\pi f_r L=\dfrac{1}{2\pi f_r C}$$ So, $$f_r= \dfrac{1}{\sqrt{4\pi^2 CL}} \tag 3$$ Now we need to find $C$, where from (2), $$X_C=X_L-R\tan\phi =2\pi f L-R\tan\phi$$ $$\dfrac{1}{2\pi f C} =2\pi f L-R\tan\phi$$ So, $$C=\dfrac{1}{2\pi f (2\pi f L-R\tan\phi)}$$ where $f=1/T$ $$C=\dfrac{1}{\frac{2\pi}{T} \left(\frac{2\pi L}{T} -R\tan\phi\right)}$$ Plug the known; $$C=\dfrac{1}{\frac{2\pi}{(100\times 10^{-6})} \left(\frac{2\pi (200\times 10^{-6})}{(100\times 10^{-6})} -(2.5)\tan60^\circ\right)}$$ $$C=\bf 1.93\;\rm \mu F$$ Plug the known into (3), $$f_r= \dfrac{1}{\sqrt{4\pi^2 (1.93\times 10^{-6})(200\times 10^{-6})}} $$ $$f_r=\color{red}{\bf 8100}\;\rm Hz$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.