Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1055: 71

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ As we see below, the inductor voltages lead the current by 90$^\circ$, while the capacitor voltage lags the current by 90$^\circ$. The resistor voltage and current are in phase. The capacitor, the inductor, and the resistor are in parallel, so $$V_L=V_C=V_{R} \tag 1$$ We know that a resistor's voltage and current are in phase while the current leads the voltage in a capacitor by 90$^\circ$, and the voltage leads the current in the inductor by 90$^\circ$. This means that the angle between $I_C$ and $I_L$ is 180$^\circ$, and the angle between $I_R$, and $I_C$ is 90$^\circ$ while the angle between $I_R$ and $I_L$ is -90$^\circ$. Hence, $$I^2 =(I_L-I_C)^2+I_R^2$$ So, $$\left[ \dfrac{\varepsilon_0}{Z} \right]^2 =\left[ \dfrac{\varepsilon_0}{X_L}-\dfrac{\varepsilon_0}{X_C} \right]^2+\left[ \dfrac{\varepsilon_0}{R} \right]^2$$ where $\varepsilon_0$ is a common factor, $$\left[ \dfrac{1}{Z} \right]^2 =\left[ \dfrac{1}{X_L}-\dfrac{1}{X_C} \right]^2+\left[ \dfrac{1}{R} \right]^2$$ $$ Z =\left(\left[ \dfrac{1}{\omega L}-\omega C \right]^2+ \dfrac{1}{R^2}\right)^{-1/2} \tag 2$$ Recalling that $$I=\dfrac{\varepsilon_0}{Z}$$ Plug from (2), $$I=\dfrac{\varepsilon_0}{\left(\left[ \dfrac{1}{\omega L}-\omega C \right]^2+ \dfrac{1}{R^2}\right)^{-1/2}}$$ $$I=\varepsilon_0\left(\left[ \dfrac{1}{\omega L}-\omega C \right]^2+ \dfrac{1}{R^2}\right)^{1/2}$$ $$\boxed{I=\varepsilon_0\sqrt{\left[ \dfrac{1}{\omega L}-\omega C \right]^2+ \dfrac{1}{R^2}}}$$ $$\color{blue}{\bf [b]}$$ From the boxed formula above, When $\omega \rightarrow 0$, then $I\rightarrow\infty$. And when $\omega \rightarrow \infty$, then $I\rightarrow\infty$. $$\color{blue}{\bf [c]}$$ To find the minimum current, we need to find the point at which $dI/d\omega=0$. $$\dfrac{dI}{d\omega}=0$$ $$\dfrac{d }{d\omega}\left[ \varepsilon_0^2 \left[ \omega^{-1} L^{-1}-\omega C \right]^2+ \dfrac{1}{R^2}\right]^{1/2}=0$$ $$\dfrac{1}{2}\left[ \varepsilon_0^2 \left[ \omega^{-1} L^{-1} -\omega C \right]^2+ \dfrac{1}{R^2}\right]^{-1/2}\left[\varepsilon_0^2(2)(-\omega^{-2}L^{-1}-C)\right][\omega^{-1} L^{-1}-\omega C]=0$$ Then, $$\dfrac{\dfrac{1}{2}\left[\varepsilon_0^2(2)(-\omega^{-2}L^{-1}-C)\right][\omega^{-1} L^{-1}-\omega C]}{\left[ \varepsilon_0^2 \left[ \omega^{-1} L^{-1} -\omega C \right]^2+ \dfrac{1}{R^2}\right]^{1/2} }=0$$ $$ (-\omega^{-2}L^{-1}-C) (\omega^{-1} L^{-1}-\omega C ) =0$$ Thus, $$ -\omega^{-2}L^{-1}-C =0\;\;\;\;\Rightarrow \omega^2=\dfrac{1}{\sqrt{-CL}}\tag{not real}$$ and, $$ (\omega^{-1} L^{-1}-\omega C ) =0\;\;\;\;\Rightarrow \omega^2=\dfrac{1}{\sqrt{ CL}}=\omega_0^2$$ The minimum value of $I$ occurs at $$\boxed{\omega=\omega_0=\dfrac{1}{\sqrt{ CL}}}$$ $$\color{blue}{\bf [d]}$$ From above, we can see that the minimum value of the current is at $\omega=\omega_0$, while it reaches high values when $\omega\rightarrow 0$ or $\omega\rightarrow \infty$ See the graph below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.