Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1055: 69

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the peak inductor voltage is given by $$V_L=IX_L$$ where $X_L=\omega L$, and $I=\varepsilon_0/Z$ $$V_L=\dfrac{\varepsilon_0\omega L}{Z}\tag 1$$ where, in $RLC$ circuits, $Z=\sqrt{(X_L-X_C)^2+R^2}$ where $X_C=q/\omega C$ $$V_L=\dfrac{\varepsilon_0\omega L}{\sqrt{(\omega L-\frac{1}{\omega C})^2+R^2}}$$ $$V_L=\dfrac{\varepsilon_0\omega L}{\left[ \frac{L^2}{\omega^2}(\omega^2 -\frac{1}{LC})^2+R^2\right]^{1/2}}$$ where $1/LC=\omega_0^2$; $$V_L=\dfrac{\varepsilon_0\omega L}{ \left[ \frac{L^2}{\omega^2}(\omega^2 -\omega_0^2)^2+R^2\right]^{1/2}}$$ $$V_L=\dfrac{\varepsilon_0\omega^2 L}{ \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{1/2}}$$ Maximizing the inductor voltage means that $dV_L/d\omega=0$. So $$ \dfrac{d}{d\omega} \dfrac{\varepsilon_0\omega^2 L}{ \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{1/2}}=0$$ $$ \dfrac{2\varepsilon_0\omega L\left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{1/2}-\frac{1}{2} \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{-1/2}[4\omega L^2(\omega^2-\omega_0^2)+2\omega R^2](\varepsilon_0\omega^2 L)}{ \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right] }=0$$ Hence, $$2\varepsilon_0\omega L\left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{1/2}=\frac{1}{2} \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{-1/2}[4\omega L^2(\omega^2-\omega_0^2)+2\omega R^2](\varepsilon_0\omega^2 L) $$ $$2 \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{1/2}= \left[ L^2 (\omega^2 -\omega_0^2)^2+\omega^2R^2\right]^{-1/2}[2 L^2(\omega^2-\omega_0^2)+ R^2] \omega^2 $$ $$2 L^2 (\omega^2 -\omega_0^2)^2+2\omega^2R^2 = 2 L^2\omega^2(\omega^2-\omega_0^2)+\omega^2 R^2 $$ $$2 L^2 (\omega^4 -2\omega^2 \omega_0^2+\omega_0^4) + \omega^2R^2 = 2 L^2\omega^4 -2 L^2\omega^2\omega_0^2 $$ $$2 L^2 \omega^4 -4L^2\omega^2 \omega_0^2+2L^2\omega_0^4 + \omega^2R^2 = 2 L^2\omega^4 -2 L^2\omega^2\omega_0^2 $$ $$ 2L^2\omega_0^4 + \omega^2R^2 = 2 L^2\omega^2\omega_0^2 $$ $$ \omega^2R^2 - 2 L^2\omega^2\omega_0^2 =-2L^2\omega_0^4 $$ $$ \omega^2(R^2 - 2 L^2 \omega_0^2) =-2L^2\omega_0^4 $$ $$ \omega^2 =\dfrac{-2L^2\omega_0^4 }{R^2 - 2 L^2 \omega_0^2}$$ since $\omega_0^2=1/LC$, $\omega_0^4=1/L^2C^2$ $$ \omega^2 =\dfrac{-2L^2 }{L^2C^2[R^2 - 2 L^2 \omega_0^2]}$$ $$ \omega^2 =\dfrac{-2 }{ C^2[R^2 - 2 L^2 \omega_0^2]}$$ $$ \omega^2 =\dfrac{1 }{ -\frac{1}{2}C^2 R^2 + C^2 L^2 \omega_0^2}$$ $$ \omega^2 =\dfrac{1 }{ -\frac{1}{2}C^2 R^2 + C^2 L^2 \frac{1}{LC}}$$ $$ \omega =\sqrt{\dfrac{1 }{ -\frac{1}{2}C^2 R^2 + C L }}$$ $$ \omega = \left[ C L -\frac{1}{2}C^2 R^2 \right]^{-1/2}$$ $$ \boxed{\omega_L = \left[ \dfrac{1}{\omega_0^2} -\frac{1}{2}C^2 R^2 \right]^{-1/2}}$$ $$\color{blue}{\bf [b]}$$ $\Rightarrow$ when $\omega=\omega_0$, then $Z=R$ Plug into (1), $$V_L=\dfrac{\varepsilon_0\omega L}{Z}= \dfrac{\varepsilon_0\omega_0 L}{R}$$ So, $$V_L= \dfrac{\varepsilon_0 L}{R\sqrt{LC}}$$ $$V_L= \dfrac{\varepsilon_0 }{R}\sqrt{\dfrac{L}{C}}$$ Plug the given; $$V_L= \dfrac{(10)}{(1)}\sqrt{\dfrac{(1\times 10^{-6})}{(1\times 10^{-6})}}$$ $$V_L=\color{red}{\bf 10}\;\rm V$$ $\Rightarrow$ when $\omega=\omega_L$, then $Z=\sqrt{(\omega_L L-\dfrac{1}{\omega_L C})^2+R^2}$ Plug into (1), $$V_L=\dfrac{\varepsilon_0\omega_L L}{\sqrt{(\omega_L L-\dfrac{1}{\omega_L C})^2+R^2}}\tag 2 $$ Plug the given into the boxed formula above to find $\omega_L$, $$ \omega_L = \left[ \dfrac{1}{\omega_0^2} -\frac{1}{2}C^2 R^2 \right]^{-1/2} = \left[ LC -\frac{1}{2}C^2 R^2 \right]^{-1/2} $$ $$ \omega_L = \left[ (10^{-6})^2 -\frac{1}{2}(10^{-6})^2 (1)^2 \right]^{-1/2} $$ $$\omega_L =\bf 1.414\times 10^6\;\rm rad/s$$ Plug the known into (2), $$V_L=\dfrac{(10)(1.414\times 10^6)( 10^{-6})}{\sqrt{\left((1.414\times 10^6)( 10^{-6})-\dfrac{1}{(1.414\times 10^6)( 10^{-6})}\right)^2+1^2}} $$ $$V_L=\color{red}{\bf 11.55}\;\rm V$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.