Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1053: 49

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know, from Ohm's law, that $$\varepsilon_{\rm rms}= I_{\rm rms} Z= I_{\rm rms}{\sqrt{(X_L -X_C)^2+R^2}}$$ where $X_L=\omega L=2\pi fL$, and $X_C=1/2\pi fC$ $$\varepsilon_{\rm rms}= I_{\rm rms}\sqrt{\left(2\pi f L-\dfrac{1}{2\pi fC}\right)^2+R^2}$$ Plug the known; $$\varepsilon_{\rm rms}= (2.5)\sqrt{\left(2\pi (60)(0.10)-\dfrac{1}{2\pi (60)(100\times 10^{-6})}\right)^2+(25)^2}$$ $$\varepsilon_{\rm rms}= \color{red}{\bf 68.5}\;\rm V$$ $$\color{blue}{\bf [b]}$$ The phase angle is given by $$\phi=\tan^{-1}\left[\dfrac{X_L-X_C}{R}\right]$$ where $X_L=\omega L=2\pi fL$, and $X_C=1/2\pi fC$ $$\phi=\tan^{-1}\left[\dfrac{2\pi fL-\dfrac{1}{2\pi fC}}{R}\right]$$ Plug the given; $$\phi=\tan^{-1}\left[\dfrac{2\pi (60)(0.10)-\dfrac{1}{2\pi (60)(100\times 10^{-6})}}{(25)}\right]$$ $$\phi=\color{red}{\bf 24.1}^\circ$$ $$\color{blue}{\bf [c]}$$ The average power loss is the power dissipated through the resistor which is given by $$P_R=I_{\rm rms}\varepsilon_{\rm rms}\cos\phi$$ where $I_{\rm rms}=\varepsilon_{\rm rms}/R$, $$P_R= \dfrac{\varepsilon^2_{\rm rms}\cos\phi}{R}$$ Plug the known; $$P_R= \dfrac{(68.5)^2\cos(24.1^\circ)}{25}$$ $$P_R= \color{red}{\bf 171}\;\rm W$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.