Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1053: 39

Answer

See the detailed answer below.

Work Step by Step

For $RC$ filter circuit, we know that $$V_R=IR=\dfrac{\varepsilon_0R}{\sqrt{R^2+X_C^2}} $$ where $X_C=1/\omega C$; $$V_R= \dfrac{\varepsilon_0R}{\sqrt{R^2+\dfrac{1}{\omega^2C^2}}}\tag 1$$ and that $$V_C=IX_C=\dfrac{\varepsilon_0X_C}{\sqrt{R^2+X_C^2}}$$ So, $$V_C =\dfrac{1}{\omega C}\dfrac{\varepsilon_0 }{\sqrt{R^2+\dfrac{1}{\omega^2C^2}}}\tag 2$$ At $\omega=\omega_c$, where $\omega_c=\dfrac{1}{RC}=\omega\Rightarrow$ $$ \dfrac{1}{\omega C}=R\tag 3$$ Plug (3) into (1), $$V_R= \dfrac{\varepsilon_0R}{\sqrt{R^2+R^2}} =\dfrac{\varepsilon_0 \color{red}{\bf\not} R}{\sqrt{2}\; \color{red}{\bf\not} R}$$ $$\boxed{V_R =\dfrac{\varepsilon_0 }{\sqrt{2} }}$$ Plug (3) into (2), $$V_C =R\dfrac{\varepsilon_0 }{\sqrt{R^2+R^2}} $$ $$\boxed{V_C = \dfrac{\varepsilon_0 }{\sqrt{2}} }$$ Thus, from the two boxed formulas, $V_C=V_R$. $$\boxed{V_C =V_R= \dfrac{\varepsilon_0 }{\sqrt{2}} }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.