Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1053: 36

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ For an $RC$ circuit, the capacitor voltage is given by $$V_C=\dfrac{\varepsilon_0X_C}{\sqrt{R^2+X_C^2}}$$ where $X_C=1/\omega C$; $$V_C=\dfrac{\varepsilon_0}{\omega C}\dfrac{1}{\sqrt{R^2+\dfrac{1}{\omega^2 C^2}}}$$ Squaring both sides; $$V_C^2=\dfrac{\varepsilon_0^2}{\omega^2 C^2}\dfrac{1}{ R^2+\dfrac{1}{\omega^2 C^2}}$$ At $V_C=\frac{1}{2}\varepsilon_0$; $$\frac{1}{4} \color{red}{\bf\not} \varepsilon_0^2=\dfrac{ \color{red}{\bf\not} \varepsilon_0^2}{\omega^2 C^2}\dfrac{1}{ R^2+\dfrac{1}{\omega^2 C^2}}$$ $$ 1=\dfrac{ 4}{\omega^2 C^2}\dfrac{1}{ R^2+\dfrac{1}{\omega^2 C^2}}$$ $$ 1= \dfrac{4}{ \omega^2R^2C^2+1}$$ $$\omega^2R^2C^2+1=4$$ $$\omega =\sqrt{\dfrac{3}{R^2C^2}}$$ $$\boxed{\omega =\dfrac{\sqrt{3}}{R C }}$$ $$\color{blue}{\bf [b]}$$ For an $RC$ circuit, the resistor voltage is given by $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+X_C^2}}$$ where $X_C=1/\omega C$; $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+\dfrac{1}{\omega^2 C^2}}}$$ Plugging from the boxed formula above. $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+\dfrac{1}{\dfrac{3}{R^2 \color{red}{\bf\not} C^2} \color{red}{\bf\not} C^2}}}$$ $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+\dfrac{R^2}{3 }}} =\dfrac{\varepsilon_0 }{\sqrt{1+\dfrac{1}{3 }}}$$ $$V_R=\dfrac{\sqrt{3}\;\varepsilon_0}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.