Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 35 - AC Circuits - Exercises and Problems - Page 1053: 35

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ For an $RC$ circuit, the resistor voltage is given by $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+X_C^2}}$$ where $X_C=1/\omega C$; $$V_R=\dfrac{\varepsilon_0R}{\sqrt{R^2+\dfrac{1}{\omega^2 C^2}}}$$ Squaring both sides; $$V_R^2=\dfrac{\varepsilon_0^2R^2}{ R^2+\dfrac{1}{\omega^2 C^2}}$$ At $V_R=\frac{1}{2}\varepsilon_0$; $$\frac{1}{4}\color{red}{\bf\not}\varepsilon_0^2=\dfrac{\color{red}{\bf\not}\varepsilon_0^2R^2}{ R^2+\dfrac{1}{\omega^2 C^2}}$$ $$R^2+\dfrac{1}{\omega^2 C^2}= 4R^2 $$ $$ \dfrac{1}{\omega^2 C^2}= 3R^2 $$ $$ \omega =\sqrt{\dfrac{1}{3R^2 C^2} }$$ $$ \boxed{\omega =\dfrac{1}{\sqrt{3}\;R C }}$$ $$\color{blue}{\bf [b]}$$ For an $RC$ circuit, the capacitor voltage is given by $$V_C=IX_C=\dfrac{V_R}{R}\cdot \dfrac{1}{\omega C}$$ $$V_C= \dfrac{\varepsilon_0}{2R}\cdot \dfrac{1}{\omega C}$$ Plugging from the boxed formula above. $$V_C= \dfrac{\varepsilon_0}{2\color{red}{\bf\not} R}\cdot \dfrac{\sqrt{3}\;\color{red}{\bf\not} R \color{red}{\bf\not} C}{ \color{red}{\bf\not} C}$$ $$\boxed{V_C= \dfrac{\sqrt{3}\;\varepsilon_0}{2}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.