Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1030: 36

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ Recalling that the voltage across the capacitor while it is charging is given by $$V_C=\varepsilon\left(1-e^{-t/RC}\right)\tag 1$$ Now we need to find the maximum displacement current through the capacitor where the displacement current is given by $$I_{\rm disp }=\dfrac{dQ}{dt}$$ Recalling that $V_C=Q/C\Rightarrow Q=V_CC$, $$I_{\rm disp }=C\dfrac{dV_C}{dt}$$ Plug from (1), $$I_{\rm disp }=C\dfrac{d }{dt}\varepsilon\left(1-e^{-t/RC}\right)$$ $$I_{\rm disp }=\varepsilon C \left(0-\dfrac{-1}{RC}e^{-t/RC}\right)$$ $$I_{\rm disp }= \dfrac{ \varepsilon \color{red}{\bf\not} C}{R \color{red}{\bf\not} C}e^{-t/RC} $$ $$I_{\rm disp }= \dfrac{ \varepsilon }{R }e^{-t/RC}\tag 2 $$ So, the maximum current occurs when $e^{-t/RC}=1$, Thus, $$(I_{\rm disp })_{max}= \dfrac{ \varepsilon }{R } =\dfrac{25}{150} $$ $$(I_{\rm disp })_{max}= \color{red}{\bf 0.167}\;\rm A$$ The maximum electric flux through the capacitor is given by $$(\Phi_e)_{max}=E_{\rm max}A$$ where $E=V_C/d$ where $d$ is the separation distance between the capacitor's plates. $$(\Phi_e)_{max}=\dfrac{V_{\rm max}}{d}A$$ where $V_{\rm max}$ here is the voltage of the battery. $$(\Phi_e)_{max}=\dfrac{\varepsilon }{d} A$$ Recalling that the capacitance is given by $C=\epsilon_0 A/d\Rightarrow A=Cd/\epsilon_0$ Hence, $$(\Phi_e)_{max}=\dfrac{\varepsilon }{ \color{red}{\bf\not} d} \dfrac{C \color{red}{\bf\not} d}{\epsilon_0}$$ $$(\Phi_e)_{max}= \dfrac{\varepsilon C }{\epsilon_0}\tag 3$$ Plug the known; $$(\Phi_e)_{max}= \dfrac{(25)(2.5\times 10^{-12}) }{(8.85\times 10^{-12})}$$ $$(\Phi_e)_{max}= \color{red}{\bf7.1}\;\rm V\cdot m$$ $$\color{blue}{\bf [b]}$$ The electric flux through the capacitor is given by $$\Phi_e=(\Phi_e)_{\rm max}\left(1-e^{-t/RC}\right)$$ Plug from (3), $$\Phi_e=\dfrac{\varepsilon C }{\epsilon_0}\left(1-e^{-t/RC}\right)$$ Plug the known; $$\Phi_e=\dfrac{(25)(2.5\times 10^{-12}) }{(8.85\times 10^{-12})}\left(1-e^{-(0.5\times 10^{-9})/(150)(2.5\times 10^{-12})}\right)$$ $$\Phi_e=\color{red}{\bf 5.2}\;\rm V\cdot m$$ Now we need to plug the known into (2), $$I_{\rm disp }= \dfrac{ 25 }{150}e^{-(0.5\times 10^{-9})/(150)(2.5\times 10^{-12})}$$ $$I_{\rm disp }=\color{red}{\bf 0.044}\;\rm A$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.