Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1030: 29

Answer

$({\bf -1.73\times 10^6}\;\hat i ) \;\rm V/m$

Work Step by Step

From the given graph, we can see that: - $B= 0.10\;\hat i\;\rm T$ - $\sum F=3.2\times 10^{-13}(-\cos30^\circ\;\hat i+\sin30^\circ\;\hat j)\;\rm N$ - $v=10^7\;\hat z\;\rm m/s$ So the net force exerted on a moving charge in an electromagnetic field is given by $$\sum F=q(\vec E+\vec v\times \vec B)$$ Solving for $\vec E$; $$\vec E =\dfrac{\sum F}{q}-\vec v\times \vec B$$ Plug the given; $$\vec E =\dfrac{3.2\times 10^{-13}(-\cos30^\circ\;\hat i+\sin30^\circ\;\hat j)}{1.6\times 10^{-19}}-(10^7\;\hat z)\times (0.10\;\hat i)$$ $$\vec E =-1.73\times 10^6\;\hat i+ 10^6\;\hat j - 10^6\;\hat j $$ Thus, $$\vec E =(\color{red}{\bf -1.73\times 10^6}\;\hat i ) \;\rm V/m$$ It is obvious now that the direction of the electric field is to the left, in the negative $x$-axis.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.