Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1029: 3

Answer

See the detailed answer below.

Work Step by Step

According to the Galilean fields transformation equations, $$\left.\begin{matrix} &\vec E_B=\vec E_A+\vec v_{BA}\times \vec B_A \\ & \vec B_B=\vec B_A-\dfrac{\vec v_{BA}\times \vec E_A}{c^2}\\ \end{matrix}\right\}\tag 1$$ We are given that $B_A=\bf0\;\rm T$, and $E_A={\bf 1.0\times 10^6}\;\rm V/m$ So, in a region of space at which $B=0$, using the first formula above, $$\vec E_B=\vec E_A+\vec v_{BA}\times 0$$ $$\vec E_B=\vec E_A=\color{red}{\bf 1.0\times 10^6}\;\hat k\;\rm V/m$$ And hence, from the second formula, $$ \vec B_B=0-\dfrac{\vec v_{BA}\times \vec E_A}{c^2}$$ Plug the known; $$ \vec B_B= -\dfrac{1}{(3\times 10^8)^2}(1.0\times 10^6\;\hat i)\times (1.0\times 10^6\;\hat k)$$ $$ \vec B_B= -\dfrac{1}{(3\times 10^8)^2}(-1.0\times 10^{12}\;\hat j) $$ $$ \vec B_B= \color{red}{\bf 1.11\times 10^{-5}}\;\hat j\;\rm T $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.