Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 34 - Electromagnetic Fields and Waves - Exercises and Problems - Page 1029: 5

Answer

See the detailed answer below.

Work Step by Step

According to the Galilean fields transformation equations, $$\left.\begin{matrix} &\vec E_B=\vec E_A+\vec v_{BA}\times \vec B_A \\ & \vec B_B=\vec B_A-\dfrac{\vec v_{BA}\times \vec E_A}{c^2}\\ \end{matrix}\right\}\tag 1$$ Let's assume that Earth is the reference frame A, and the rocket is the reference frame B. So we are given that - $B_B=(1.0\;\hat j)\;\rm T$, - $E_B=( 10^6 \;\hat k)\;\rm V/m$, - $\vec v_{BA}=(2\times 10^6\hat i)\;\rm m/s$ We need to find the electric field and the magnetic field measured from Earth, which are $E_A$, and $B_A$. To find $\vec E_A$, we can use the first Galilean's fields transformation equation equation above. $$\vec E_B=\vec E_A+\vec v_{BA}\times \vec B_A $$ $$ \vec E_A=\vec E_B-\vec v_{BA}\times \vec B_A \tag 1$$ Plug into the second formula from (1) above, $$\vec B_B=\vec B_A-\dfrac{\vec v_{BA}\times\left[\vec E_B-\vec v_{BA}\times \vec B_A\right]}{c^2}$$ Plug the known; $$(1.0\;\hat j)=\vec B_A-\dfrac{(2\times 10^6\hat i)\times\left[( 10^6 \;\hat k)-(2\times 10^6\hat i)\times \vec B_A\right]}{c^2}$$ $$(1.0\;\hat j)=\dfrac{c^2\vec B_A-\left((2\times 10^6\hat i)\times\left[( 10^6 \;\hat k)-(2\times 10^6\hat i)\times \vec B_A\right]\right)}{c^2}$$ $$c^2(1.0\;\hat j)=c^2\vec B_A-\left((2\times 10^6\hat i)\times\left[( 10^6 \;\hat k)-(2\times 10^6\hat i)\times \vec B_A\right]\right)$$ $$c^2(1.0\;\hat j)=c^2\vec B_A-\left((-2\times 10^{12}\hat j) -0 \right)$$ $$c^2(1.0\;\hat j)=c^2\vec B_A+(2\times 10^{12}\hat j) $$ Solving for $\vec B_A$, $$ \vec B_A =(1.0\;\hat j)-\dfrac{(2\times 10^{12}\hat j) }{c^2} $$ Plug the known; $$ \vec B_A =(1.0\;\hat j)-\dfrac{(2\times 10^{12}\hat j) }{(3\times 10^8)^2} $$ $$ \vec B_A =(\color{red}{\bf 0.999977}\;\hat j)\;\rm T$$ Now we need to plug the known into (1), $$ \vec E_A=( 10^6 \;\hat k)- (2\times 10^6\hat i)\times (0.999977\;\hat j) $$ $$ \vec E_A=( 10^6 \;\hat k)- (1.999954\times 10^6\hat k) $$ $$ \vec E_A= (\color{red}{\bf -0.999954\times 10^6}\hat k)\;\rm V/m $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.