Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 16 - A Macroscopic Description of Matter - Exercises and Problems - Page 467: 64

Answer

See the detailed answer below.

Work Step by Step

First, we need to find the number of moles in 5 g nitrogen. $$n=\dfrac{m_{N_2}}{M_{N_2}}=\dfrac{m_{N_2}}{2M_N}$$ Plugging the known; $$n =\dfrac{5}{2(14)}=\bf\frac{5}{28}\;\rm mol$$ Now we need to find the initial volume by using the ideal gas law of $$P_1 V_1=nRT_1$$ Hence, $$V_1=\dfrac{nRT_1}{P_1 }$$ Plugging the known; $$V_1=\dfrac{(\frac{5}{28})(8.31)(20+273)}{3\times 1.013\times 10^5}$$ $$V_1=\bf 1.431\times 10^{-3}\;\rm m^3=\bf 1431\;\rm cm^3$$ ________________________________________________________________________ a) We need to find the volume at the end of the isobaric process. We know that the volume has tripled. So, $$V_2=3V_1=3\times1431$$ $$V_2=\color{red}{\bf 4293}\;\rm cm^3$$ ________________________________________________________________________ b) The temperature after the expansion is the temperature at the end of the isobaric process which is given by $$P_2V_2= nRT_2 $$ Hence, $$T_2=\dfrac{P_2V_2}{nR}$$ where $P_1=P_2=3\;\rm atm$, and $V_2=3V_1$ $$T_2=\dfrac{3P_1V_1}{nR}$$ And to find it in Celsius, $$T_2=\dfrac{3P_1V_1}{nR}-273$$ Plugging the known $$T_2=\dfrac{3 (3\times 1.013\times 10^5)(1431\times 10^{-6})}{(\frac{5}{28})(8.31)}-273$$ $$T_2=\color{red}{\bf 606}^\circ \rm C$$ ________________________________________________________________________ c) Now the gas undergoes an isochoric process and at the end of this process, $T_3=T_1$ Hence, the pressure is given by $$P_3 =\dfrac{nRT_3}{V_3}$$ where $V_3=V_2=3V_1$, and $T_3=T_1$. $$P_3 =\dfrac{nRT_1}{V_2}$$ Plugging the known; $$P_3 =\dfrac{(\frac{5}{28})(8.31)(20+273)}{3\times 1431\times 10^{-6}}$$ $$P_3=1.013\times 10^5=\color{red}{\bf 1}\;\rm atm$$ ________________________________________________________________________ c) Now the gas undergoes an isothermal process and at the end of this process, $V_4=V_1$ Hence, the pressure is given by $$P_4 =\dfrac{nRT_4}{V_4}$$ where $V_4=V_1$, and $T_4=T_3=T_1$. $$P_4 =\dfrac{nRT_1}{V_1}$$ Plugging the known; $$P_3 =\dfrac{(\frac{5}{28})(8.31)(20+273)}{ 1431\times 10^{-6}}$$ $$P_3=3.034\times 10^5=\color{red}{\bf 3}\;\rm atm$$ ________________________________________________________________________ d) We have here 4 points: $\bullet$ $ (V_1,P_1)=\rm(1431\;cm^3,3\;atm)$ $\bullet$ $ (V_2,P_2)=\rm(4293\;cm^3,3\;atm)$ $\bullet$ $ (V_3,P_3)=\rm(4293\;cm^3,1\;atm)$ $\bullet$ $ (V_4,P_4)=\rm(1431\;cm^3,3\;atm)$ We can see that the 4th point is actually the 1st point. So it ends where it starts. See the graph below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.