Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 13 - Newton's Theory of Gravity - Exercises and Problems - Page 375: 58

Answer

See the detailed answer below.

Work Step by Step

a) We know that the final velocity is half the initial velocity, so to find the final one we need to find the initial one. The net force exerted on the spaceship initially is given by $$\sum F_G=\dfrac{GM \color{red}{\bf\not}m_{ship}}{r_0^2}= \color{red}{\bf\not}m_{ship}a_r$$ where $a_r=v^2/r_0$ $$ \dfrac{GM }{r_0^{ \color{red}{\bf\not}2}}= \dfrac{v_0^2}{ \color{red}{\bf\not}r_0} $$ Hence, $$v_0=\sqrt{\dfrac{GM}{r_0}}\tag 1$$ Thus, the final velocity is given by $$v_{new}=\dfrac{1}{2}v_0=\dfrac{1}{2}\sqrt{\dfrac{GM}{r_0}}$$ $$\boxed{v_{new}= \sqrt{\dfrac{GM}{4r_0}}}\tag 2$$ --- b) The maximum radius is the initial radius $r_0$, as we see in the figure below. We can see that the energy of the system is conserved since we assume that is an isolated system. Thus, $$E_i=E_f$$ $$K_i+U_{ig}=K_f+U_{gf}$$ $$\frac{1}{2} \color{red}{\bf\not}m_{ship}v_i^2+\dfrac{-GM \color{red}{\bf\not}m_{ship}}{r_0 }=\frac{1}{2} \color{red}{\bf\not}m_{ship}v_f^2+\dfrac{-GM \color{red}{\bf\not}m_{ship}}{r_{min} }$$ $$\frac{1}{2} v_i^2+\dfrac{-GM }{r_0 }=\frac{1}{2} v_f^2+\dfrac{-GM }{r_{min} }$$ $\times 2$; $$ v_i^2+\dfrac{-2GM }{r_0 }= v_f^2+\dfrac{-2GM }{r_{min} }$$ $$ v_i^2- v_f^2=\dfrac{-2GM }{r_{min} }+\dfrac{ 2GM }{r_0 }\tag 3$$ And since the system is isolated, the linear momentum around the planet is conserved. $$L_i=L_f$$ $$ \color{red}{\bf\not}m_{ship}v_i\;r_0= \color{red}{\bf\not}m_{ship}v_fr_{min}$$ $$ v_ir_0= v_f\;r_{min}$$ Thus, $$v_f=\dfrac{v_ir_0}{r_{min}}$$ Plugging into (3); $$v_i^2- \left[\dfrac{v_ir_0}{r_{min}}\right]^2 =\dfrac{-2GM }{r_{min} }+\dfrac{ 2GM }{r_0 } $$ $$v_i^2- \left(\dfrac{r_0^2}{r_{min}^2}\right)v_i^2 =\dfrac{-2GM }{r_{min} }+\dfrac{ 2GM }{r_0 } $$ $$v_i^2\left[ 1- \dfrac{r_0^2}{r_{min}^2}\right] =\dfrac{-2GM }{r_{min} }+\dfrac{ 2GM }{r_0 } $$ Noting that $v_i$ here is the new velocity we found above. Plugins from (2) $$\dfrac{ \color{red}{\bf\not}G \color{red}{\bf\not}M}{4r_0}\left[ 1- \dfrac{r_0^2}{r_{min}^2}\right] =\dfrac{-2 \color{red}{\bf\not}G \color{red}{\bf\not}M }{r_{min} }+\dfrac{ 2 \color{red}{\bf\not}G \color{red}{\bf\not}M }{r_0 } $$ $\times 4r_0$; $$ 1- \dfrac{r_0^2}{r_{min}^2} =\dfrac{-8r_0}{r_{min} }+\dfrac{ 8 \color{red}{\bf\not}r_0 }{ \color{red}{\bf\not}r_0 } $$ $$ \dfrac{r_{min}^2-r_0^2}{r_{min}^{ \color{red}{\bf\not}2}} =\dfrac{-8r_0+8r_{min} }{ \color{red}{\bf\not}r_{min} }$$ $$r_{min}^2-r_0^2=-8r_0r_{min}+8r_{min}^2$$ $$7r_{min}^2 -8r_0r_{min} +r_0^2=0$$ Hence, using the quadratic formula; $$r_{min}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}$$ where here $a=7$, $b=-8r_0$, and $c=r_0^2$ $$r_{min}=\dfrac{ -(-8r_0) \pm \sqrt{ (-8r_0)^2-4 (r_0^2)(7)}}{2(7)}$$ Therefore, $$\boxed{r_{min}=\dfrac{r_0}{7}}\;\;\;\;\;\;{\rm Or}\;\;\;\;\;\; r_{min}=r_0$$ This means that the maximum radius is $r_0$ and the minimum radius is $r_0/7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.