Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 13 - Newton's Theory of Gravity - Exercises and Problems - Page 375: 63

Answer

$1.5\times 10^9 \;\rm m$

Work Step by Step

First, we need to sketch the force diagram exerted on our satellite by the Earth and the Sun, as shown below. According to the author, we need to find $r$ in the figure below. The net force exerted on the satellite is given by Newton's second law; $$\sum F_r=F_{\text{Sun on Satellite}}-F_{\text{Earth on Satellite}}=m_{\rm Satellite}a_r$$ Applying Newton's gravitational law; $$ \dfrac{Gm_{\rm Sun}\color{red}{\bf\not}m_{\rm Satellite}}{R_s^2}-\dfrac{Gm_{\rm Earth}\color{red}{\bf\not}m_{\rm Satellite}}{r^2}=\color{red}{\bf\not}m_{\rm Satellite}\dfrac{v^2}{R_s}$$ $$ \dfrac{Gm_{\rm Sun}} {R_s^2}-\dfrac{Gm_{\rm Earth} }{r^2} =\dfrac{v^2}{R_s}$$ where $v=2\pi R_s/T$ and the period of our satellite is the same as the Earth, one year. $$ \dfrac{Gm_{\rm Sun}} {R_s^2}-\dfrac{Gm_{\rm Earth} }{r^2} =\dfrac{4\pi^2 R_s^{\color{red}{\bf\not}2}}{T^2\color{red}{\bf\not}R_s}$$ where $R_s=R_E-r$ $$ \dfrac{Gm_{\rm Sun}} {(R_E-r)^2}-\dfrac{Gm_{\rm Earth} }{r^2} =\dfrac{4\pi^2 (R_E-r)}{T^2 }\tag 1$$ where $T=T_e$ and is given by $$\dfrac{GM_{\rm Sun}\color{red}{\bf\not}m_{\rm Earth}}{R_E^{\color{red}{\bf\not}2}}=\color{red}{\bf\not}m_{\rm Earth}\dfrac{v^2}{\color{red}{\bf\not}R_E}$$ $$\dfrac{GM_{\rm Sun} }{R_E }= \dfrac{4\pi^2 R_E^2}{T^2 }$$ Thus, $$T^2=\dfrac{4\pi^2 R_E^3}{GM_{\rm Sun} }$$ Plugging into (1); $$ \dfrac{\color{red}{\bf\not}Gm_{\rm Sun}} {(R_E-r)^2}-\dfrac{\color{red}{\bf\not}Gm_{\rm Earth} }{r^2} =\dfrac{\color{red}{\bf\not}4\color{red}{\bf\not}\pi^2 (R_E-r)\color{red}{\bf\not}Gm_{\rm Sun} }{ \color{red}{\bf\not}4\color{red}{\bf\not}\pi^2 R_E^3 } $$ Now we need to solve for $r$ and the author told us to use the binomial approximation. $$ \dfrac{ m_{\rm Sun}} {(1-\frac{r}{R_E})^2R_E^2}-\dfrac{ m_{\rm Earth} }{r^2} =\dfrac{ (1-\frac{r}{R_E})\color{red}{\bf\not}R_E\;m_{\rm Sun}}{R_E^{\color{red}{\bf\not}3} }$$ $$ \dfrac{ m_{\rm Sun}(1-\frac{r}{R_E})^{-2}} {R_E^2}-\dfrac{ m_{\rm Earth} }{r^2} =\dfrac{ (1-\frac{r}{R_E}) m_{\rm Sun}}{R_E^2 }$$ where $[r/R_E\lt \lt 1]$, so $(1-\frac{r}{R_E})^{-2 }\approx 1-(-2 )\frac{r}{R_E}$; $$ \dfrac{ m_{\rm Sun}(1+2\frac{r}{R_E}) } {R_E^2}-\dfrac{ m_{\rm Earth} }{r^2} =\dfrac{ (1-\frac{r}{R_E}) m_{\rm Sun}}{R_E^2 }$$ $$ \dfrac{ m_{\rm Sun}(1+2\frac{r}{R_E}) } {R_E^2}- \dfrac{ (1-\frac{r}{R_E}) m_{\rm Sun}}{R_E^2 }=\dfrac{ m_{\rm Earth} }{r^2} $$ $$ \dfrac{ m_{\rm Sun}\left[(1+2\frac{r}{R_E})- (1-\frac{r}{R_E}) \right]}{R_E^2 }=\dfrac{ m_{\rm Earth} }{r^2} $$ $$ \dfrac{ m_{\rm Sun}\left[ 1+2\frac{r}{R_E} - 1+\frac{r}{R_E} \right]}{R_E^2 }=\dfrac{ m_{\rm Earth} }{r^2} $$ $$ \dfrac{ 3rm_{\rm Sun} }{R_E^3}=\dfrac{ m_{\rm Earth} }{r^2} $$ Thus, $$r^3=\dfrac{ m_{\rm Earth} R_E^3}{3 m_{\rm Sun} } $$ $$r =\sqrt[3]{\dfrac{ m_{\rm Earth} R_E^3}{3 m_{\rm Sun} } }$$ $$r =R_E\cdot \sqrt[3]{\dfrac{ m_{\rm Earth} }{3 m_{\rm Sun} } }$$ Plugging from table 13.2; $$r =(1.5\times 10^{11})\cdot \sqrt[3]{\dfrac{ (5.98\times 10^{24}) }{3 (1.99\times 10^{30}) } }=\color{red}{\bf1.5\times 10^9}\;\rm m$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.