Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 13 - Newton's Theory of Gravity - Exercises and Problems - Page 375: 68

Answer

See the detailed answer below.

Work Step by Step

a) We know that the energy and the momentum are conserved. So, $$E_1=E_2$$ $$K_1+U_{g1}=K_2+U_{g2}$$ $$\frac{1}{2}\color{red}{\bf\not} mv_1^2+\dfrac{-GM_E\color{red}{\bf\not} m}{r_1 }=\frac{1}{2}\color{red}{\bf\not} mv_2^2+\dfrac{-GM_E\color{red}{\bf\not} m}{r_2 }$$ Multiplying by 2; $$ v_1^2+\dfrac{-2GM_E }{r_1}= v_2^2+\dfrac{-2GM_E }{r_2}\tag 1$$ According to the conservation of angular momentum: $$L_i=L_f$$ $$ \color{red}{\bf\not}mv_1r_1 \color{red}{\bf\not}\sin90^\circ= \color{red}{\bf\not}mv_2r_2 \color{red}{\bf\not}\sin90^\circ$$ $$v_1r_1=v_2r_2$$ So, $$v_1=\dfrac{v_2r_2}{r_1}\tag 2$$ Plugging into (1); $$ \left(\dfrac{v_2r_2}{r_1}\right)^2+\dfrac{-2GM_E }{r_1 }= v_2^2+\dfrac{-2GM_E }{r_2 } $$ $$ \dfrac{v_2^2r_2^2}{r_1^2,}-v_2^2= \dfrac{-2GM_E }{r_2 } +\dfrac{2GM_E }{r_1 }$$ $$ v_2^2\left[\dfrac{r_2^2}{r_1^2}-1\right]=-2GM_E\left[ \dfrac{ 1}{r_2 } -\dfrac{1}{r_1 }\right]$$ $$ v_2^2\left[\dfrac{r_2^2-r_1^2}{r_1^{ \color{red}{\bf\not}2}} \right]= -2GM_E\left[ \dfrac{ r_1 -r_2 }{ \color{red}{\bf\not}r_1 r_2 } \right]$$ $$ v_2^2\left[\dfrac{ \color{red}{\bf\not}(r_2-r_1)(r_2+r_1)}{r_1 } \right]= 2GM_E\left[ \dfrac{ \color{red}{\bf\not}(r_2 -r_1) }{ r_2 } \right]$$ $$v_2^2=\dfrac{2GM_E}{r_2}\cdot \dfrac{r_1}{r_1+r_2}$$ Thus, $$v_2=\sqrt{\dfrac{2GM_E}{r_2}\cdot \dfrac{r_1}{r_1+r_2}}$$ $$\boxed{v_2'=\sqrt{\dfrac{2GM (r_1/r_2)}{r_1+r_2}}}$$ Plugging into (2); $$v_1=\sqrt{\dfrac{2GM_E(r_1/r_2)}{r_1+r_2}}\dfrac{ r_2}{r_1}=\sqrt{\dfrac{2GM_E( \color{red}{\bf\not}r_1/ \color{red}{\bf\not}r_2)}{r_1+r_2}\cdot \dfrac{ r_2^{ \color{red}{\bf\not}2}}{r_1^{ \color{red}{\bf\not}2}}}$$ $$\boxed{v_1'=\sqrt{\dfrac{2GM (r_2/r_1)}{r_1+r_2}}}$$ ____________________________________________ b) We know that $$r_1=R_E+(300\times 10^3)=(6.37\times 10^6)+(300\times 10^3)$$ $$r_1=\bf 6.67\times 10^6\;\rm m$$ and $$r_2=R_E+(35,900\times 10^3)=(6.37\times 10^6)+(35,900\times 10^3)$$ $$r_2=\bf 4.227\times10^7\;\rm m$$ To find $v_1'$ we can use the second boxed formula above: $$v_1'=\sqrt{\dfrac{2GM (r_2/r_1)}{r_1+r_2}}$$ Plugging the known; $$v_1'=\sqrt{\dfrac{2(6.67\times 10^{-11})(5.98\times 10^{24}) ([4.227\times10^7]/[6.67\times 10^6])}{(6.67\times 10^6)+(4.227\times10^7)}}$$ $$v_1'=\color{red}{\bf 1.0164\times 10^4}\;\rm m/s$$ ____________________________________________ c) We can use the work-kinetic energy theorem to find the work done by the rocket's motor. $$W_1=\Delta K=\frac{1}{2}m{v_1^2}'-\frac{1}{2}m{v_1^2} $$ We found $v_1'$, so we need to find the speed of the circular orbit $v_1$ when the satellite was at 300 km above the ground. Using Newton's second law: $$\dfrac{GM\color{red}{\bf\not}m}{r_1^{ \color{red}{\bf\not}2}}=\dfrac{ \color{red}{\bf\not}mv_1^2}{ \color{red}{\bf\not}r_1}$$ Hence, $$v_1=\sqrt{\dfrac{GM}{r_1}}=\sqrt{\dfrac{(6.67\times 10^{-11})(5.98\times 10^{24})}{6.67\times 10^6}}$$ $$v_1 =\color{blue}{\bf 7.733\times 10^3}\;\rm m/s$$ Plugging the two velocities into the work formula above: $$W_1= \frac{1}{2}m\left[{v_1^2}'- {v_1^2} \right]$$ $$W_1= \frac{1}{2}(1000)\left[(1.0164\times 10^4)^2- (7.733 \times 10^3)^2 \right]$$ $$W_1=\color{red}{\bf 2.17\times10^{10}}\;\rm J$$ ____________________________________________ d) Using the boxed formula above for $v_2'$: $$ v_2'=\sqrt{\dfrac{2GM (r_1/r_2)}{r_1+r_2}} $$ $$v_2'=\sqrt{\dfrac{2(6.67\times 10^{-11})(5.98\times 10^{24}) ([6.67\times 10^6]/[4.227\times10^7])}{(6.67\times 10^6)+(4.227\times10^7)}}$$ $$v_2'=\color{red}{\bf 1.604\times 10^3}\;\rm m/s$$ Now we need to find $v_2$ for circular orbit at the same distance: $$v_2=\sqrt{\dfrac{GM}{r_2}}=\sqrt{\dfrac{(6.67\times 10^{-11})(5.98\times 10^{24})}{4.227\times 10^7}}$$ $$v_2 =\color{red}{\bf 3.072\times 10^3}\;\rm m/s$$ ____________________________________________ e) By the same approach as part (c); $$W_2= \frac{1}{2}m\left[{v_2^2}- {v_2^2}'\right]$$ $$W_2= \frac{1}{2}(1000)\left[(3.072\times 10^3)^2- ( 1.604\times 10^3)^2 \right]$$ $$W_2=\color{red}{\bf 3.432\times10^9}\;\rm J$$ ____________________________________________ f) The total work done is given by $$W_{tot}=W_1+W_2$$ Plugging from above; $$W_{tot}=(2.17\times10^{10})+(3.432\times10^9)$$ $$W_{tot}=\color{red}{\bf 2.51\times10^{10}}\;\rm J$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.