Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 17 - Waves-II - Problems - Page 508: 36

Answer

$r_f = 0.675~m$

Work Step by Step

Let $I_i$ be the initial sound intensity. We can find an expression for $I_i$: $\beta_i = (10~dB)~log~\frac{I_i}{I_0}$ $\frac{\beta_i}{10} = log~\frac{I_i}{I_0}$ $I_i = 10^{\frac{\beta_i}{10}}~\cdot I_0$ Let $I_f$ be the final sound intensity. We can find an expression for $I_f$: $\beta_1+5~dB = (10~dB)~log~\frac{I_f}{I_0}$ $\frac{\beta_1}{10}+0.5 = log~\frac{I_f}{I_0}$ $10^{(\frac{\beta_1}{10}+0.5)} = \frac{I_f}{I_0}$ $10^{0.5}~\cdot 10^{\frac{\beta_1}{10}} = \frac{I_f}{I_0}$ $I_f = 10^{0.5}~\cdot 10^{\frac{\beta_1}{10}}~\cdot I_0$ We can find $r_f$: $Power = I_i~4\pi~r_i^2 = I_f~4\pi~r_f^2$ $r_f^2 = \frac{I_i~4\pi~r_i^2}{I_f~4\pi}$ $r_f^2 = \frac{I_i~r_i^2}{I_f}$ $r_f = \sqrt{\frac{I_i}{I_f}}~\cdot r_i$ $r_f = \sqrt{\frac{10^{\frac{\beta_i}{10}}~\cdot I_0}{10^{0.5}~\cdot 10^{\frac{\beta_1}{10}}~\cdot I_0}}~\cdot (1.20~m)$ $r_f = \sqrt{\frac{1}{10^{0.5}}}~\cdot (1.20~m)$ $r_f = \sqrt{\frac{1}{\sqrt{10}}}~\cdot (1.20~m)$ $r_f = 0.675~m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.