Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 8 - Section 8.3 - Products and Quotients in Trigonometric Form - 8.3 Problem Set - Page 440: 58

Answer

See the answer below.

Work Step by Step

By replacing $x$ with $2(\cos 300^{\circ}+i\sin300^{\circ})$, we get $x^{2}-2x+4=[2(\cos 300^{\circ}+i\sin300^{\circ})]^{2}-2[2(\cos 300^{\circ}+i\sin300^{\circ})]+4$ We need to show that $[2(\cos 300^{\circ}+i\sin300^{\circ})]^{2}-2[2(\cos 300^{\circ}+i\sin300^{\circ})]+4=0$ Using de Moivre's theorem, we have $[2(\cos 300^{\circ}+i\sin300^{\circ})]^{2}=(2)^{2}[\cos(2\cdot300^{\circ})+i\sin(2\cdot300^{\circ})]$ $=4(\cos600^{\circ}+i\sin600^{\circ})$ $=4(\cos 240^{\circ}+i\sin240^{\circ})$ ($240^{\circ}$ is coterminal with $600^{\circ}$) $=4(-\frac{1}{2}+i\cdot-\frac{\sqrt 3}{2})=-2-2i\sqrt 3$ $2[2(\cos 300^{\circ}+i\sin300^{\circ})]=4(\cos 300^{\circ}+i\sin300^{\circ})$ $=4(\frac{1}{2}+i\cdot-\frac{\sqrt 3}{2})=2-2i\sqrt 3$ Therefore, we have $[2(\cos 60^{\circ}+i\sin60^{\circ})]^{2}-2[2(\cos 60^{\circ}+i\sin60^{\circ})]+4$ $=(-2-2i\sqrt 3)-(2-2i\sqrt 3)+4$ $=-2-2i\sqrt {3}-2+2i\sqrt {3}+4=0$ Thus we showed that $x=2(\cos 300^{\circ}+i\sin300^{\circ})$ is a solution to the quadratic equation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.