Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 17 - Second-Order Differential Equations - 17.4 Exercises - Page 1192: 7

Answer

$C_0+C_1 \Sigma^\infty_{n=1} \dfrac{x^n}{n!}=C_0-C_1\ln(1-x)$

Work Step by Step

Given: $y''+xy'+y=0$ Since, $y=\Sigma^\infty_{n=0}c_{n} x^{n}$ Here, we have $y'=\Sigma^\infty_{n=1}n c_n x^{n-1}$ and $y''=\Sigma^\infty_{n=2}n(n-1) C_{n} x^{n-2}$ Then, the given equation $(x-1)y''+y'=0$ becomes: $\Sigma^\infty_{n=2}n(n-1) C_{n} x^{n-2}+\Sigma^\infty_{n=1}n c_n x^{n-1}=0$ or, $\Sigma^\infty_{n=1}n(n-1)c_{n}x^{n-1}-\Sigma^\infty_{n=1}(n+1)n c_{n+1}x^{n-1}+\Sigma^\infty_{n=1}n c_{n}x^{n-1}=0$ or, $c_{n+1}=\dfrac{n}{n+1}c_n$ For n=2 , we have $C_{2} =\dfrac{C_{1}}{2}$; For n=3 , we have $C_{3} =\dfrac{C_{1}}{3}$; Thus, we get $C_{n} = \dfrac{1}{n}C_n$ We know that $ \Sigma^\infty_{n=0} \dfrac{x^n}{n!}=e^{x} $ Hence, $y= \dfrac{(-1)^n}{2 \cdot 4 \cdot 6...(2n)}C_0+ \dfrac{(-1)^n}{3 \cdot 5 \cdot 7...(2n+1)}C_1$ or, $y= C_0+C_1 \Sigma^\infty_{n=1} \dfrac{x^n}{n!}=C_0-C_1\ln(1-x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.