Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 17 - Second-Order Differential Equations - 17.4 Exercises - Page 1192: 4

Answer

$\dfrac{9C_0}{(3-x)^2}$

Work Step by Step

Given: $(x-3)y+2y=0$ Since, $y=\Sigma^\infty_{n=0}c_{n} x^{n}$ Here, we have $y'=\Sigma^\infty_{n=1}n c_n x^{n-1}$ Then, the given equation $(x-3)y+2y=0$ becomes: $(x-3) \Sigma^\infty_{n=1}nC_{n} x^{n-1}+2[ \Sigma^\infty_{n=0}C_{n}x^{n}]=0$ or, $-3\Sigma^\infty_{n=0}(n+1)c_{n+1}(n+1)x^{n}+\Sigma^\infty_{n=0}(n+2) c_{n}x^{n}=0$ or, $c_{n+1}=\dfrac{(n+2)}{3(n+1)}c_n$ For n=2 , we have $C_{2} =\dfrac{C_{0}}{3}$; Thus, we get $C_{n} = \dfrac{n+1}{3^n}C_0$ We know that $ \Sigma^\infty_{n=0} \dfrac{x^n}{n!}=e^{x} $ $y= C_0\Sigma^\infty_{n=0} \dfrac{n+1}{3^n}x^n=C_0\Sigma^\infty_{n=0} (\dfrac{x}{3})^n+C_0\Sigma^\infty_{n=0} n(\dfrac{x}{3})^n$ or, $y=C_0\Sigma^\infty_{n=0} (\dfrac{x}{3})^n+C_0x \dfrac{d}{dx} [\Sigma^\infty_{n=0} n(\dfrac{x}{3})^n]$ or, $y=\dfrac{3(3-x)C_0}{(3-x)^2}+ \dfrac{3C_0x}{(3-x)^2}=\dfrac{9C_0}{(3-x)^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.