Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 17 - Second-Order Differential Equations - 17.4 Exercises - Page 1192: 3

Answer

$C_0\Sigma^\infty_{n=0} \dfrac{x^{3n}}{3^n n!}=C_{0} e^{x^3/3}$

Work Step by Step

Given: $y' =x^2y$ Since, $y=\Sigma^\infty_{n=0}c_{n} x^{n}$ Here, we have $y'=\Sigma^\infty_{n=1}n c_n x^{n-1}$ Then, the given equation $y' =x^2y$ becomes : $\Sigma^\infty_{n=1}nC_{n} x^{n-1}= x^2[ \Sigma^\infty_{n=0}C_{n}x^{n}]$ or, $\Sigma^\infty_{n=2}c_{n+1}(n+1)x^{n}-\Sigma^\infty_{n=0}c_{n}x^{n+2}=0$ or, $c_1+2c_2x+\Sigma^{2}_{n=0}((n+1)-c_{n-2}) x^{n}=0$ For n=2 , we have $C_{3} =\dfrac{C_{0}}{3}$; For n=3 , we have $C_{4} = \dfrac{C_{1}}{4}=0$; For n=8 , we have $C_{9} = (\dfrac{1}{9}) (\dfrac{1}{6}) \times \dfrac{1}{3} C_{0}=0$ Thus, we get $C_{3n} = \dfrac{C_0}{3^n n!}$ We know that $ \Sigma^\infty_{n=0} \dfrac{x^n}{n!}=e^{x} $ Hence, $y=C_0\Sigma^\infty_{n=0} \dfrac{x^{3n}}{3^n n!}=C_{0} e^{x^3/3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.