Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 17 - Second-Order Differential Equations - 17.4 Exercises - Page 1192: 2

Answer

$y=C_{0} e^{x^2/2}$

Work Step by Step

Given: $y' =xy$ Since, $y=\Sigma^\infty_{n=0}c_{n} x^{n}$ Here, we have $y'=\Sigma^\infty_{n=1}n c_n x^{n-1}$ Then, the given equation $y' =xy$ becomes : $\Sigma^\infty_{n=1}nC_{n} x^{n-1}= x[ \Sigma^\infty_{n=0}C_{n}x^{n}]$ or, $c_1+\Sigma^\infty_{n=2}nc_nx^{n-1}=\Sigma^\infty_{n=0}c_{n}x^{n+1}$ or, $c_1+\Sigma^\infty_{n=0}(n+2)c_{n+2} x^{n+1}=\Sigma^\infty_{n=0}c_{n}x^{n+1}$ or, $c_1+\Sigma^\infty_{n=0}[(n+2)c_{n+2} x^{n+1}-c_n]x^{n+1}=0$ This gives: $c_1=0$ and $c_{n+2}=\dfrac{c_n}{n+2}$ For odd values of $n=3,5...$, we have $C_{3} =0$; and $C_{5} = 0$; For even values of $n=2,4...$, we have $C_{2} = \dfrac{C_0}{2}$; $C_{4} = \dfrac{C_0}{2 \times 4}$ This gives the pattern $C_{2n} = (\dfrac{1}{2})^n \dfrac{c_0}{n!}$ Thus, $y=\Sigma^\infty_{n=0} (\dfrac{1}{2})^n \dfrac{c_0}{n!}x^{2n}+\Sigma^\infty_{n=0} (0) x^{2n+1}$ We know that $ \Sigma^\infty_{n=0} \dfrac{x^n}{n!}=e^{x} $ Hence, $y=C_{0} e^{x^2/2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.