Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - Review - Exercises - Page 898: 5

Answer

$\dfrac{1}{3} i -\dfrac{2}{\pi^2}j+\dfrac{2}{\pi}k$

Work Step by Step

Let us consider that $I=\int_0^{1} r(t) dt$ and $I=\int_0^{1} \lt t^2, t \cos \pi t, \sin \pi t \gt dt$ This implies that $I=[\lt \dfrac{t^3}{3}, \dfrac{t \sin \pi t}{\pi}+\dfrac{\cos \pi t}{\pi^2},-\dfrac{\cos \pi t}{\pi} \gt ]_0^1$ $\implies \lt \dfrac{1}{3}-0, [\dfrac{(1) \times \sin \pi (1)}{\pi}+\dfrac{ \cos \pi (1)}{\pi^2}]- [0+\dfrac{ \cos \pi (0)}{\pi^2}],-\dfrac{\cos \pi (1)}{\pi} -(\dfrac{\cos 0}{\pi}) \gt $ or, $I= \lt \dfrac{1}{3}, -\dfrac{1}{\pi^2}-\dfrac{ 1}{\pi^2}, \dfrac{1}{\pi}+\dfrac{1}{\pi} \gt $ Hence, $\int_0^{1} r(t) dt=\dfrac{1}{3} i -\dfrac{2}{\pi^2}j+\dfrac{2}{\pi}k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.