Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - Review - Exercises - Page 898: 2

Answer

a) $t \in (-1,0) \cup (0,2]$ b) $\lim\limits_{t \to 0} r(t)=\lt \sqrt 2, 1, 0 \gt$ c) $r'(t) =\lt \dfrac{-1}{2\sqrt {2-t}},\dfrac{te^t-e^t+1}{t^2}, \dfrac{1}{t+1} \gt$

Work Step by Step

a) Domain of the $x$ component is given as: $\sqrt{2-t}$; domain is $t \in (-\infty, 2]$ Domain of the $y$ component is given as: $\dfrac{e^t-1}{t}$; domain is $t \in (-\infty,0) \cup (0, \infty)$ Domain of the $z$ component is: $ln(1+t)$ domain is $t \in (-1, \infty)$ Hence, we have $t \in (-1,0) \cup (0,2]$ b) Here, we have $\lim\limits_{t \to 0}\sqrt {2-t}=\sqrt 2$ and $\lim\limits_{t \to 0} \dfrac{e^t}{t}=1$; $ \lim\limits_{t \to 0} \ln(1+t)=\ln (1)=0$ Hence, we have $\lim\limits_{t \to 0} r(t)=\lt \sqrt 2, 1, 0 \gt$ c) Take the derivative of each component. Thus, we have $r'(t) =\lt \dfrac{-1}{2\sqrt {2-t}},\dfrac{te^t-e^t+1}{t^2}, \dfrac{1}{t+1} \gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.