Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - Review - Exercises - Page 898: 8

Answer

$\dfrac{2}{27} (13\sqrt {13}-8)$

Work Step by Step

Given: $r(t)=\lt 2t^{3/2}, \cos 2t, \sin 2t \gt$; $0 \leq t \leq 1$ The length of the curve $r(t)=\lt 2t^{3/2}, \cos 2t, \sin 2t \gt$; $0 \leq t \leq 1$ is given as: $l=\int_m^n|r'(t)| dt$ Take derivative of the $r(t)=\lt 2t^{3/2}, \cos 2t, \sin 2t \gt$; $0 \leq t \leq 1$ with respect to $t$. $r'(t)=\lt \dfrac{(2)(3)}{2}t^{3/2-1}, -2\sin 2t, 2\cos 2t \gt$ This gives: $r'(t)=\lt 3 \sqrt t, -2\sin 2t, 2\cos 2t \gt$ and $|r'(t)|=\sqrt{( 3 \sqrt t)^2+(-2\sin 2t)^2+(2\cos 2t)^2}$ or, $|r'(t)|=\sqrt{9t+4\sin^2 2t+4\cos^2 2t}=\sqrt{9t+4}$ Now, $l=\int_m^n|r'(t)| dt=\int_0^1\sqrt{9t+4} dt$ Let us consider $9t+4 =p \implies dt=\dfrac{dp}{9}$ The limits also change. When $t= 0 \implies p=4$ and when $t=1 \implies p=9(1)+4=13$ Thus, $l=(1/9) \int_{4}^{13} p^{1/2} dp$ $l=\dfrac{1}{9}[\dfrac{2}{3} p^{3/2}]_{4}^{13} =\dfrac{2}{27}[(13)^{3/2}-(4)^{3/2}]=\dfrac{2}{27} (13\sqrt {13}-8)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.