Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - Review - Exercises - Page 898: 12

Answer

At $(3,0)$, $\kappa = \dfrac{3}{16}$ At $(0,4)$, $\kappa = \dfrac{4}{9}$

Work Step by Step

The curvature $\kappa$ for a plane curve system is: $\kappa = \dfrac{(x' y''-y'x'')}{(x'+y')^{3/2}}$ Now, $x=3 \cos t \implies x' =-3 \sin t $ and $x'' =-3 \cos t $ and $y =4 \sin t \implies y' =4 \cos t $ and $y'' =-4 \sin t $ Now, $\kappa = \dfrac{(12 \sin^2 t+12 \cos^2 t)}{(9 \sin^2 t 16 \cos^2 t)^{3/2}} =\dfrac{12}{(9 \sin^2 t 16 \cos^2 t)^{3/2}}$ At $(3,0)$, $\kappa = \dfrac{(12 \sin^2 t+12 \cos^2 t)}{(9 \sin^2 t + 16 \cos^2 t)^{3/2}} =\dfrac{12}{16 \cos^2 (0)^{3/2}}=\dfrac{3}{16}$ At $(0,4)$, $\kappa = \dfrac{12}{(9 \sin^2 (\pi/2) + 16 \cos^2 (\pi/2))^{3/2}} =\dfrac{12}{9^{3/2}}=\dfrac{4}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.