Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.7 Optimization Problems - 3.7 Exercises - Page 265: 27

Answer

$\frac{L}{2}$ and $\frac{\sqrt {3}L}{4}$

Work Step by Step

The height $h$ of the equilateral triangle with sides of length $L$ is: $h^{2}+(\frac{L}{2})^{2}$ = $L^{2}$ $h^{2}$ = $L^{2}-(\frac{L}{2})^{2}$ = $\frac{3L^{2}}{4}$ $h$ = $\frac{\sqrt 3{L}}{2}$ Using similar triangles we have: $\frac{\frac{\sqrt 3{L}}{2}-y}{x}$ = $\frac{\frac{\sqrt 3{L}}{2}}{\frac{L}{2}}$ $\frac{\frac{\sqrt 3{L}}{2}-y}{x}$ = $\sqrt 3$ $y$ = $\frac{\sqrt 3{L}}{2}-\sqrt {3}x$ The area of the inscribed rectangle is $A(x)$ = $(2x)y$ = $\sqrt {3}x(L-2x)$ where $0$ $\leq$ $x$ $\leq$ $\frac{L}{2}$ $A'(x)$ = $\sqrt {3}L-4{\sqrt {3}}x$ $A'(x)$ = $0$ $\sqrt {3}L-4{\sqrt {3}}x$ = $0$ $x$ = $\frac{L}{4}$ $A(0)$ = $A\left(\frac{L}{2}\right)$ = $0$ The maximum occurs when $x$ = $\frac{L}{4}$ $y$ = $\frac{\sqrt {3}L}{2}-\frac{\sqrt {3}L}{4}$ = $\frac{\sqrt {3}L}{4}$ so the dimensions are $\frac{L}{2}$ and $\frac{\sqrt {3}L}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.