Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.7 Optimization Problems - 3.7 Exercises - Page 265: 33

Answer

$\pi{r^{2}}(1+\sqrt 5)$

Work Step by Step

The cylinder has surface area $S=2$(base area)+(lateral surface area) = $2\pi{(radius)^{2}}+2\pi{(radius)(height)}$ = $2\pi{y^{2}}+2\pi{y(2x)}$ $x^{2}+y^{2}$ = $r^{2}$ $y^{2}$ = $r^{2}-x^{2}$ $y$ = $\sqrt {r^{2}-x^{2}}$ so the surface area is $S(x)$ = $2\pi{(r^{2}-x^{2})}+4\pi{x(\sqrt {r^{2}-x^{2}})}$, $0$ $\leq$ $x$ $\leq$ $r$ $S'(x)$ = $2\pi{r^{2}}-2\pi{x^{2}}+4\pi{(x\sqrt {r^{2}-x^{2}})}$ $S'(x)$ = $-4\pi{x}+4\pi{\left[x\left(\frac{1}{2}\right)(r^{2}-x^{2})^{1\frac{1}{2}}(-2x)+(r^{2}-x^{2})^{\frac{1}{2}}(1)\right]}$ $S'(x)$ = $4\pi{\left[\frac{-x\sqrt {r^{2}-x^{2}}-x^{2}+r^{2}-x^{2}}{\sqrt {r^{2}-x^{2}}}\right]}$ $S'(x)$ =$0$ $x\sqrt {r^{2}-x^{2}}$ = $r^{2}-2x^{2}$ $5x^{4}-5r^{2}x^{2}+r^{4}$ = $0$ This is quadratic equation in $x^{2}$. By the quadratic formula $x^{2}$ = $\frac{(5±\sqrt 5)r^{2}}{10}$ We reject the root with the $+$ since it does not satisfy $r^{2}-2x^{2}>0$, so $x$ = $\sqrt {\frac{(5-\sqrt 5)}{10}}r$ Since $S(0)$ = $S(r)$ = $0$ the maximum surface area occurs at the critical number and $x^{2}$ = $\frac{(5-\sqrt 5)r^{2}}{10}$ $y^{2}$ = $r^{2}-\frac{(5-\sqrt 5)r^{2}}{10}$ = $\frac{(5+\sqrt 5)r^{2}}{10}$ The surface area is $2\pi{[\frac{(5+\sqrt 5)r^{2}}{10}]}+4\pi{\sqrt {\frac{(5-\sqrt 5)}{10}}\sqrt {\frac{(5+\sqrt 5)}{10}}r^{2}}$ = $\pi{r^{2}}(1+\sqrt 5)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.