Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.3 How Derivatives Affect the Shape of a Graph - 3.3 Exercises - Page 229: 41

Answer

a) Increasing on $(-1,\infty)$, decreasing on $(-\infty,-1$ b) Local minimum value: $C(-1) = -3$ c) Concave downward on $(0,2)$, concave upward on $(-\infty,0)\cup(2,\infty)$ Inflection points: $(0,0)$, $(2,6\sqrt[3] 2)$ d) See graph

Work Step by Step

a) $C(x)$ = $x^{\frac{1}{3}}(x+4)$ = $x^{\frac{4}{3}}+4x^{\frac{1}{3}}$ $C'(x)$ = $\frac{4}{3}x^{\frac{1}{3}}+\frac{4}{3}x^{-\frac{2}{3}}$ = $\frac{4(x+1)}{3\sqrt[3] {x^{2}}}$ $C'(x)$ $\gt$ $0$ if $-1$ $\lt$ $x$ $\lt$ $0$ or $x$ $\gt$ $0$ $C'(x)$ $\lt$ $0$ if $x$ $\lt$ $-1$ $C$ is increasing on $(-1,\infty)$ $C$ is decreasing on $(-\infty,-1)$ b) $C(-1)$ = $-3$ is a local minimum value. c) $C''(x)$ = $\frac{4}{9}x^{-\frac{2}{3}}-\frac{8}{9}x^{-\frac{5}{3}}(x-2)$ = $\frac{4(x-2)}{9\sqrt[3] {x^{5}}}$ $C''(x)$ $\lt$ $0$ for $0$ $\lt$ $x$ $\lt$ $2$ $C''(x)$ $\gt$ $0$ for $x$ $\lt$ $0$ and $x$ $\gt$ $2$ $C$ is concave downward on $(0,2)$ $C$ is concave upward on $(-\infty,0)\cup(2,\infty)$ There are inflection points at $(0,0)$ and $(2,6\sqrt[3] 2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.