Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.3 How Derivatives Affect the Shape of a Graph - 3.3 Exercises - Page 229: 43

Answer

a) Increasing on $(\pi,2\pi)$, decreasing on $(0,\pi)$ b) Local minimum value: $f(\pi) = -1$ c) Concave upward on $\left(\frac{\pi}{3},\frac{5\pi}{3}\right)$, concave downward on $\left(0,\frac{\pi}{3}\right)\cup\left(\frac{\pi}{3},2\pi\right)$ Points of inflection: $\left(\frac{\pi}{3},\frac{5}{4}\right)$ and $\left(\frac{5\pi}{3},\frac{5}{4}\right)$ d) See graph

Work Step by Step

a) $f(θ)$ = $2\cos θ+\cos^{2} θ$ $f'(θ)$ = $-2\sin θ-2\cos θ\sin θ$ = $-2\sin θ(1+\cos θ)$ $f'(θ)$ = $0\Rightarrow θ$ = $0,\pi,2\pi$ $f'(θ)$ $\gt$ $0$ for $ \pi$ $\lt$ $θ$ $\lt$ $2\pi$ $f'(θ)$ $\lt$ $0$ for $0$ $\lt$ $θ$ $\lt$ $\pi$ $f$ is increasing on $(\pi,2\pi)$ $f$ is decreasing on $(0,\pi)$ b) $f(\pi)$ = $-1$ is a local minimum value c) $f'(θ)$ = $-2\sin θ(1+\cos θ)$ $f''(θ)$ = $2\sin θ\sin θ-2\cos θ(1+\cos θ)$ = $-2(2\cos θ-1)(2\cos θ+1)$ $f''(θ)$ $\gt$ $0$ $2\cos θ-1$ $\lt$ $0$ $\cos θ$ $\lt$ $\frac{1}{2}$ for $\frac{\pi}{3}$ $\lt$ $θ$ $\lt$ $\frac{5\pi}{3}$ $f''(θ)$ $\lt$ $0$ $\cos θ$ $\gt$ $\frac{1}{2}$ for $0$ $\lt$ $θ$ $\lt$ $\frac{\pi}{3}$ or $\frac{5\pi}{3}$ $θ$ $\lt$ $2\pi$ $f$ is concave upward on $\left(\frac{\pi}{3},\frac{5\pi}{3}\right)$ $f$ is concave downward on $\left(0,\frac{\pi}{3}\right)\cup\left(\frac{\pi}{3},2\pi\right)$ There are points of inflection at $\left(\frac{\pi}{3},\frac{5}{4}\right)$ and $\left(\frac{5\pi}{3},\frac{5}{4}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.