Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.3 How Derivatives Affect the Shape of a Graph - 3.3 Exercises - Page 229: 35

Answer

a) Increasing on $(-2,0)\cup(2,\infty)$, decreasing on $(-\infty,-2)\cup(0,2)$ b) Local maximum value: $f(0)$ = $3$, local maximum values: $f(±2)$ = $-5$ c) Concave upward on $\left(-\infty,-\frac{2}{\sqrt 3}\right)\cup\left(\frac{2}{\sqrt 3},\infty\right)$, concave downward on $\left(-\frac{2}{\sqrt 3},\frac{2}{\sqrt 3}\right)$ Inflection points: $\left(±\frac{2}{\sqrt 3},-\frac{13}{9}\right)$ d) See graph

Work Step by Step

a) $f(x)$ = $\frac{1}{2}x^{4}-4x^{2}+3$ $f'(x)$ = $2x^{3}-8x$ = $2x(x+2)(x-2)$ $f'(x)$ $\gt$ $0$ => $-2$ $\lt$ $x$ $\lt$ $0$ or $x$ $\gt$ $2$ $f'(x)$ $\lt$ $0\Rightarrow x$ $\lt$ $-2$ or $0$ $\lt$ $x$ $\lt$ $2$ so $f$ is increasing on $(-2,0)\cup(2,\infty)$ and $f$ is decreasing on $(-\infty,-2)\cup(0,2)$ b) $f$ changes from increasing to decreasing at $x$ = $0$ so $f(0)$ = $3$ is a local maximum value. $f$ change from decreasing to increasing at $x$ = $±2$ so $f(±2)$ = $-5$ is a local minimum value c) $f''(x)$ = $6x^{2}-8$ = $6\left(x+\frac{2}{\sqrt 3}\right)\left(x-\frac{2}{\sqrt 3}\right)$ $f''(x)$ = $0$ => $x$ = $±\frac{2}{\sqrt 3}$ $f''(x)$ $\gt$ $0$ on $\left(-\infty,-\frac{2}{\sqrt 3}\right)\cup\left(\frac{2}{\sqrt 3},\infty\right)$ $f''(x)$ $\lt$ $0$ on $(-\frac{2}{\sqrt 3},\frac{2}{\sqrt 3})$ $f$ is concave upward on $\left(-\infty,-\frac{2}{\sqrt 3}\right)\cup\left(\frac{2}{\sqrt 3},\infty\right)$ $f$ is concave downward on $\left(-\frac{2}{\sqrt 3},\frac{2}{\sqrt 3}\right)$ There are inflection points at $\left(±\frac{2}{\sqrt 3},-\frac{13}{9}\right)$ d) See graph
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.