Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.5 The Chain Rule - 2.5 Exercises: 28

Answer

$$F'(t)=\frac{t(t^3+4)}{2(t^3+1)^{3/2}}$$

Work Step by Step

$$F'(t)=\left(\frac{t^2}{\sqrt{t^3+1}}\right)'=\frac{(t^2)'\sqrt{t^3+1}-t^2(\sqrt{t^3+1)'}}{(\sqrt{t^3+1})^2}=\frac{2t\sqrt{t^3+1}-t^2\frac{1}{2\sqrt{t^3+1}}(t^3+1)'}{t^3+1}=\frac{4t(t^3+1)-t^2\cdot3t^3}{2(t^3+1)^{3/2}}=\frac{4t^4+4t-3t^4}{2(t^3+1)^{3/2}}= \frac{t(t^3+4)}{2(t^3+1)^{3/2}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.