Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.6 Exercises - Page 138: 7

Answer

See solution

Work Step by Step

First get inverse of $(I-C):$ \[ (I-C)^{-1}=\left[\begin{array}{cc} 1 & -.5 \\ -.6 & .8 \end{array}\right]^{-1}=\frac{1}{.3-.8}\left[\begin{array}{cc} .8 & .5 \\ .6 & 1 \end{array}\right]=\left[\begin{array}{cc} 1.6 & 1 \\ 1.2 & 2 \end{array}\right] \] Production model: $x=(I-C)^{-1} d$. We need $d_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right],$ so $x=\left[\begin{array}{cc}1.6 & 1 \\ 1.2 & 2\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1.6 \\ 1.2\end{array}\right]$ $b)$ \[ d_{2}=\left[\begin{array}{l} 51 \\ 30 \end{array}\right] \] Use same production model as in part $a$ ): \[ x=\left[\begin{array}{ll} 1.6 & 1 \\ 1.2 & 2 \end{array}\right] \cdot\left[\begin{array}{l} 51 \\ 30 \end{array}\right]=\left[\begin{array}{l} 111.6 \\ 121.2 \end{array}\right] \] c) From exercise $5,$ we know that the production corresponding to demand \[ d=\left[\begin{array}{l} 50 \\ 30 \end{array}\right] \text { is } x=\left[\begin{array}{l} 110 \\ 120 \end{array}\right] \] Also, note that $d_{2}=d+d_{1}$. Using the production model for $x_{2}$, we obtain: \[ \begin{array}{l} x_{2}=(I-C)^{-1} \cdot d_{2} \\ =(I-C)^{-1}\left(d+d_{1}\right)=\text { , distributive property of matrix multiplication } \\ =(I-C)^{-1} d+(I-C)^{-1} d_{1}= \\ =x+x_{1} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.