#### Answer

$\angle C= 91.9^{\circ}$, $BC \approx 490$ ft, $AB \approx 848$ ft

#### Work Step by Step

1. Find $\angle C$
$\angle C = 180 - (\angle B + \angle A)$
$= 180 - (52.8 + 35.3)$
$= 180 - 88.1$
$= 91.9^{\circ}$
2. Find $BC$
$\frac{BC}{sin(A)} = \frac{AC}{sin(B)}$
$\frac{BC}{sin(35.3)} = \frac{675}{sin(52.8)}$
$BC = \frac{675sin(35.3)}{sin(52.8)}$
by GDC / calculator
$BC = 489.69...$
$BC \approx 490$ ft
2. Find $AB$
$\frac{AB}{sin(C)} = \frac{AC}{sin(B)}$
$\frac{AB}{sin(91.9)} = \frac{675}{sin(52.8)}$
$AB = \frac{675sin(91.9)}{sin(52.8)}$
by GDC / calculator
$= 847.95...$
$AB \approx 848$ ft