Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.5 Length of Curves - 6.5 Exercises - Page 450: 23

Answer

$$\left. a \right)L = \int_0^\pi {\sqrt {1 + 4{{\sin }^2}2x} } dx,\,\,\,\,\left. b \right)\,\,L \approx 5.27$$

Work Step by Step

$$\eqalign{ & y = \cos 2x{\text{ on the interval }}\left[ {0,\pi } \right] \cr & {\text{Definition of Arc Length for }}y = f\left( x \right): \cr & {\text{Let }}f{\text{ have a continuous first derivative on the interval }}\left[ {a,b} \right]{\text{ }} \cr & {\text{The length of the curve }} \cr & {\text{from }}\left( {a,f\left( a \right)} \right){\text{ to }}\left( {b,f\left( b \right)} \right){\text{ is }}L = \int_a^b {\sqrt {1 + f'{{\left( x \right)}^2}} } dx \cr & {\text{Notice that }}y = f\left( x \right) = \ln x{\text{ and }} \cr & \left[ {0,\pi } \right] \to a = 0{\text{ and }}b = \pi .{\text{ Then}} \cr & \cr & \left. a \right)\,\,f'\left( x \right) = \frac{d}{{dx}}\left[ {\cos 2x} \right] \cr & f'\left( x \right) = - 2\sin 2x \cr & {\text{Using the arc length formula}}{\text{, we have}} \cr & L = \int_0^\pi {\sqrt {1 + {{\left( { - 2\sin 2x} \right)}^2}} } dx \cr & L = \int_0^\pi {\sqrt {1 + 4{{\sin }^2}2x} } dx \cr & \cr & \left. b \right){\text{ Use technology to evaluate or approximate the integral}} \cr & L \approx 1.08 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.