Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 970: 6

Answer

$$8$$

Work Step by Step

$$\eqalign{ & \int_1^2 {\int_0^1 {\left( {3{x^2} + 4{y^3}} \right)} } dydx \cr & = \int_1^2 {\left[ {\int_0^1 {\left( {3{x^2} + 4{y^3}} \right)} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & \int_0^1 {\left( {3{x^2} + 4{y^3}} \right)} dy = \left[ {3{x^2}\left( y \right) + 4\left( {\frac{{{y^4}}}{4}} \right)} \right]_0^1 \cr & = \left[ {3{x^2}y + {y^4}} \right]_0^1 \cr & {\text{evaluating the limits in the variable }}y \cr & = \left[ {3{x^2}\left( 1 \right) + {{\left( 1 \right)}^4}} \right] - \left[ {3{x^2}\left( 0 \right) + {{\left( 0 \right)}^4}} \right] \cr & {\text{simplifying}} \cr & = 3{x^2} + 1 \cr & \cr & \int_1^2 {\left[ {\int_0^1 {\left( {3{x^2} + 4{y^3}} \right)} dy} \right]} dx = \int_1^2 {\left( {3{x^2} + 1} \right)} dx \cr & {\text{integrating}} \cr & = \left( {{x^3} + x} \right)_1^2 \cr & {\text{evaluate}} \cr & = \left( {{2^3} + 2} \right) - \left( {{1^3} + 1} \right) \cr & = 10 - 2 \cr & = 8 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.