University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 23 - Electric Potential - Problems - Exercises - Page 778: 23.25

Answer

(a) (i) $V$ = 180 V, (ii) $V$ = -270 V, (iii) $V$ = -450 V (b) $\Delta V$ = 720 V

Work Step by Step

(a) $R$ is the radius of the sphere and $r$ is the distance where the potential is measured. When ($rR$), the potential is \begin{equation} V = \dfrac{1}{4 \pi \epsilon_{\circ}} \dfrac{q}{r} \end{equation} (i) $r$ = 0, the potenatil $V$ is \begin{align*} V &= \dfrac{1}{4 \pi \epsilon_{\circ}} \left[\dfrac{q_{1}}{R_{1}} + \dfrac{q_{2}}{R_{2}} \right] \\ &= (9.0 \times 10^{9} \mathrm{~N\cdot m^{2}/C^{2}}) \left[\dfrac{ 6.00 \times 10^{-9} \,\text{C}}{0.03 \,\text{m}} + \dfrac{- 9.00 \times 10^{-9} \,\text{C}}{0.05 \,\text{m}} \right] \\ &=\boxed{180 \,\text{V}} \end{align*} (ii) $r$ = 4.0 cm the potenatil $V$ is \begin{align*} V&= \dfrac{1}{4 \pi \epsilon_{\circ}} \left[\dfrac{q_{1}}{r} + \dfrac{q_{2}}{R_{2}} \right] \\ &= (9.0 \times 10^{9} \mathrm{~N\cdot m^{2}/C^{2}}) \left[\dfrac{ 6.00 \times 10^{-9} \,\text{C}}{0.04 \,\text{m}} + \dfrac{- 9.00 \times 10^{-9} \,\text{C}}{0.05 \,\text{m}} \right] \\ &=\boxed{-270 \,\text{V}} \end{align*} (iii) $r$ = 6.0 cm the potenatil $V$ is \begin{align*} V &= \dfrac{1}{4 \pi \epsilon_{\circ}} \left[\dfrac{q_{1}}{r} + \dfrac{q_{2}}{r} \right] \\ &= (9.0 \times 10^{9} \mathrm{~N\cdot m^{2}/C^{2}}) \left[\dfrac{ 6.00 \times 10^{-9} \,\text{C}}{0.06 \,\text{m}} + \dfrac{- 9.00 \times 10^{-9} \,\text{C}}{0.06 \,\text{m}} \right] \\ &=\boxed{-450\,\text{V}} \end{align*} (b) $V_1$ is obtained at $r$ = 0 and $V_2$ is obtained at $r = R$ = 5 cm and could be caclauted by \begin{align*} V_{2} &= \dfrac{1}{4 \pi \epsilon_{\circ}} \left[\dfrac{q_{1}}{r} + \dfrac{q_{2}}{R_{2}} \right] \\ &= (9.0 \times 10^{9} \mathrm{~N\cdot m^{2}/C^{2}}) \left[\dfrac{ 6.00 \times 10^{-9} \,\text{C}}{0.05 \,\text{m}} + \dfrac{- 9.00 \times 10^{-9} \,\text{C}}{0.05 \,\text{m}} \right] \\ &= -540\,\text{V} \end{align*} Hence, the potential difference $\Delta V$ will be $$\Delta V = V_{1} - V_{2} = 180 \,\text{V} - (\text{-}540\,\text{V}) = \boxed{720 \,\text{V}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.