Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 23 - Magnetic Flux and Faraday's Law of Induction - Problems and Conceptual Exercises - Page 832: 55

Answer

(a) $4.0\times 10^{-4}s $ (b) $57mA $ (c) $65mA $

Work Step by Step

(a) We know that $ R^{\prime}=R_1+R_2$ The equivalent resistance of the branch circuit with resistors $ R^{\prime}$, $ R_3$ in parallel is given as $\frac{1}{R^{\prime \prime}}=\frac{1}{R_3}+\frac{1}{R^{\prime}}$ $\frac{1}{R^{\prime \prime}}=\frac{1}{R_3}+\frac{1}{R_1+R_2}$ As $ R_1=R_2=R_3=R $ $\frac{1}{R^{\prime \prime}}=\frac{1}{R}+\frac{1}{R+R}=\frac{3}{2}R $ $\implies R^{\prime \prime}=\frac{2}{3}R $ Now the equivalent resistance of the two resistors, $ R $, $ R^{\prime \prime}$ in series is given as $ R_{eq}=R+R^{\prime \prime}=R+\frac{2}{3}R=\frac{5R}{3}$ $\implies R_{eq}=\frac{5(55\Omega)}{3}=91.67\Omega $ Now $ t=\frac{L}{R_{eq}}$ We plug in the known values to obtain: $ t=\frac{37\times 10^{-3}H}{91.67\Omega}=4.0\times 10^{-4}s $ (b) We know that $ I=\frac{\epsilon}{R_{eq}}(1-e^{-2})$ We plug in the known values to obtain: $ I=(\frac{6.0V}{91.67\Omega})(1-0.1353)$ $ I=57mA $ (c) We know that $ I=\frac{\epsilon}{R_{eq}}$ We plug in the known values to obtain: $ I=\frac{6.0V}{91.67\Omega}$ $ I=65mA $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.