Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 10 - Rotational Kinematics and Energy - Problems and Conceptual Exercises - Page 327: 71

Answer

a) $\omega=1.1\times 10^2\frac{rad}{s}$ b) $h_i=0.56m$

Work Step by Step

(a) We know that $mgh_i=\frac{1}{2}mv^2+\frac{1}{2}I\omega^2$ $\implies mgh_i=\frac{1}{2}mv^2+\frac{1}{2}(\frac{2}{5}mr^2)(\frac{v}{r})^2$ $mgh_i=\frac{7}{10}mv^2$ This can be simplified as: $v=\sqrt{\frac{10}{7}gh_i}$ As $\omega =v\frac{v}{r}$ $\implies \omega=\frac{1}{r}\sqrt{\frac{10gh_i}{7}}$ We plug in the known values to obtain: $\omega=\frac{1}{0.029}\sqrt{\frac{10(9.81)(0.78)}{7}}$ $\omega=1.1\times 10^2\frac{rad}{s}$ (b) As we know that $mgh_i=\frac{1}{2}mv^2$ This can be rearranged as: $h_i=\frac{v^2}{g}$ $\implies h_i=\frac{(\frac{10}{7}ghi)}{2g}=\frac{5}{7}(0.78)=0.56m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.