Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 36 - Relativity - Exercises and Problems - Page 1099: 48

Answer

a) ${\bf 12.81}\;\rm \mu s$ b) ${\bf 0.625} \; c$

Work Step by Step

$$\color{blue}{\bf [a]}$$ We know that the spacetime interval between the two events is invariant in all frames. So $$s^2=(c\Delta t)^2-( \Delta x)^2=(c\Delta t')^2-( \Delta x')^2$$ $$ c^2(\Delta t)^2-( \Delta x)^2=c^2(\Delta t')^2-( \Delta x')^2$$ Solving for $( \Delta t')$ $$ (\Delta t')^2= \dfrac{c^2(\Delta t)^2-( \Delta x)^2+( \Delta x')^2}{c^2} $$ $$ (\Delta t')=\sqrt{ \dfrac{c^2(\Delta t)^2-( \Delta x)^2+( \Delta x')^2}{c^2} }$$ Plug the known, $$ (\Delta t')=\sqrt{ \dfrac{(3\times 10^8)^2(10\times 10^{-6})^2-( 0)^2+( 2400)^2}{(3\times 10^8)^2} }$$ $$ (\Delta t')=\color{red}{\bf 12.81}\;\rm \mu s$$ $$\color{blue}{\bf [b]}$$ Using Lorentz transformation for time. $$t'=\gamma\left[t-\dfrac{vx}{c^2}\right] =\gamma\left[t-\dfrac{v(0)}{c^2}\right] =\gamma \;t$$ where $\gamma=\left[1-\frac{v^2}{c^2}\right]^{-1/2} $ Hence, $$t'=\left[1-\frac{v^2}{c^2}\right]^{-1/2} \;t$$ $$\dfrac{t}{t'}= \sqrt{1-\frac{v^2}{c^2}} $$ Squaring both sides; $$\dfrac{t^2}{(t')^2}= 1-\frac{v^2}{c^2} $$ $$ v^2 = c^2\left[1- \dfrac{t^2}{(t')^2} \right]$$ $$ v = c\;\sqrt{\left[1- \dfrac{t^2}{(t')^2} \right]}$$ Plug the known; $$ v = c\;\sqrt{\left[1- \dfrac{(10\mu)^2}{(12.81)^2} \right]}$$ $$ v =\color{red}{\bf 0.625} \; c$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.